
Firefly-Inspired Synchronization for

Energy-Efficient Distance Estimation in Mobile

Ad-hoc Networks

Sabrina Merkel

Institute AIFB

Karlsruhe Institute of Technology (KIT)

76128 Karlsruhe, Germany

sabrina.merkel@kit.edu

Christian Werner Becker

Institute AIFB

Karlsruhe Institute of Technology (KIT)

76128 Karlsruhe, Germany

christian.becker3@student.kit.edu

Hartmut Schmeck

Institute AIFB

Karlsruhe Institute of Technology (KIT)

76128 Karlsruhe, Germany

hartmut.schmeck@kit.edu

Abstract—Mobile ad hoc networks (MANETs) are gaining
increasing significance with computing devices becoming ubiqui-
tous and equipped with wireless communication modules. Many
applications for such networks require the devices to know their
position within the network or their distance to other devices.
Precise determination of these parameters often fails due to lack
of information, missing hardware, or inaccessibility of needed
resources, making an approximation necessary. We introduce an
algorithm to calculate hop counts and, thereby, derive distances
between devices. The algorithm is based on synchronization of all
devices in the MANET. We show that an intentional phase shift of
a periodically sent signal allows to estimate the distance between
all devices in a network and a specific reference device. This
approach significantly reduces the communication overhead lead-
ing to a more resource-efficient operation of the communication
module and, thus, potentially extending the lifetime of the mobile
devices. Experiments demonstrate that a network with an average
of ten devices within communication range can be synchronized
using a firefly-inspired decentralized synchronization algorithm.
Also, we show that the resulting distance estimates have a higher
accuracy compared to the results of an algorithm which is based
on asynchronous exchange of messages.

Index Terms—ad hoc networks; distance estimation; firefly al-
gorithm; synchronization; nature-inspired computing; resource-
saving; energy-efficient; communication;

I. INTRODUCTION

In many applications such as geographic monitoring, smart

buildings, target tracking, or disaster management, a large

number of possibly mobile devices is utilized to accomplish

a specific goal. In general, such devices consist of low power

processors, have little memory and limited wireless commu-

nication range to exchange short messages with other devices.

A network of such devices is called mobile ad hoc network

(MANET) because the network’s connectivity is dynamic and

formed ad hoc. If a message in a MANET is sent to a

device which is not situated within the communication range,

the other network devices can be used as relays to forward

the message [1]. An important parameter in many algorithms

for MANETs is the hop count. The hop count denotes the

number of relays two devices need at minimum to forward

their messages to each other [2].

The hop count is mainly used in the context of routing [2]–

[4], but it is also a basic parameter for many localization algo-

rithms, because it can be used to estimate distances between

devices [5], [6]. Localization is an important challenge for

MANETs as the devices usually are not equipped with GPS,

due to cost or size considerations. Applications which need

localization are, for example, event reporting in a monitoring

sensor network [7]–[9], location dependent routing [4], [10]–

[14], assistance of group querying [15], pattern formation

[16]–[19], and many more.

In this paper, we implement a nature-inspired synchronization

method for devices of a MANET and propose an algorithm

which determines hop counts using an intentional phase-

shift of a periodically sent signal. Compared to a tradi-

tional asynchronous message-based hop counting algorithm,

the accuracy of the derived distance estimates is shown to

be higher. Furthermore, the synchrony of the devices enables

energy-saving strategies for communication which makes the

hop counting more resource-efficient. Besides improving the

distance estimate through intentional timing of messages,

the presented algorithm does not rely on complex message

exchange and is, therefore, also suitable for devices with a

very basic communication ability.

This paper is structured as follows: In Section II, the basics

and the problem are described, as well as the related work

concerning synchronization and hop counting in ad hoc net-

works. In Section III, the firefly-inspired hop counting (FIHC)

approach is presented. Section IV shows the results of two

experiments for testing the synchronization algorithm and for

estimating distances. Section V concludes the paper.

II. BASICS

A device’s system clock is usually equipped with an os-

cillator [20], which creates almost harmonic oscillations with

period T and, therewith, determines the frequency of the clock.

The current state of an oscillating system can be described by

its phase ϕ and we have dϕ/dt = 1/T . When standardizing

the phase ϕ to values between 0 and 1, the phase denotes the



percentage of the period which has elapsed. Thus, the phase

can be expressed in terms of time t as depicted in Figure 1.

Time t

Fig. 1. Relation between a standardized phase ϕ and time t.

Timers are denoted as identical, if their period T is identical.

Devices are denoted to be synchronous, if they have identical

timers and their timers’ periods are starting at the same time,

i.e. their phase ϕ is identical for any point in time. Devices in

MANETs are usually assumed to have asynchronous, identical

timers. To achieve synchrony of these timers, we rely on a

nature-inspired synchronization algorithm called firefly algo-

rithm. In nature, synchrony can be observed in many different

circumstances, e.g. heart cells are contracted in synchrony

determining the natural heart beat and pulse [21], crickets chirp

in synchrony [22], even the menstruation cycle of females

adapt to each other striving for synchrony [23]. One of the

most fascinating phenomenon can be observed in south-east

Asia, where swarms of fireflies gather near trees and adapt

the rhythm at which they emit light signals until they reach

almost perfect synchrony [24]. The firefly algorithm imitates

their behavior. The principle can be described as follows:

Each oscillator is assumed to emit a signal at the end of its

period, i.e. when its phase has the value 1. This process is

also called firing. When another oscillator receives the firing

signal, the time to its own next firing is shortened depending

on the value of its phase at the time of reception. This

might cause the oscillator to fire too. Figure 2 illustrates this

mechanism which is explained in more detail below. Due to

the described interaction, the oscillators are also called pulse-

coupled oscillators [25].

Fig. 2. Synchronization of two oscillators. The circles represent the identical
period of the oscillators and the red and grey dots represent the phase of
the two devices. The arrows indicate the phase-advance caused by the other
device’s firing.

The basic firefly algorithm was defined in [25] and has its

origin in the work of Charles S. Peskin [21]. Each oscillator is

described by a state variable x ∈ [0, 1] which is often called

voltage in later works, due to the intuition behind it. It is

defined by an increasing, strictly concave function f : ϕ → x
such that ϕ = 0 ⇔ x = 0, ϕ = 1 ⇔ x = 1 and f ′ >
0, f ′′ < 0. When the state x reaches the value 1, the oscillator

fires and x is reset to 0. The reason for introducing the state

variable is that it offers an easy way to adjust the sensitivity

of the phase adjustment depending on the current phase. For

example, when the state x is advanced by a fixed amount ǫ
such that x′ = x+ ǫ, then the phase is set as ϕ′ = f−1(x′) to

reflect the new state of the device. In [25] the update function

of the oscillators’ states is defined as follows:

xi = 1 ⇒ xj → min(1, xj + ǫ), ∀j 6= i (1)

Hence, when an oscillator i fires, the state of all other

oscillators is increased by ǫ (cf. Equation 1), but has at most

the value 1. We denote ǫ as the impulse-intensity. In [25] it

is shown that any two oscillators can be synchronized with

this simple rule. Also, for the case of N > 2 oscillators, it is

shown that the amount of initializations which do not result

in synchrony has a the Lebesgue measure 0. For this, it is not

important, whether the impulse-intensity ǫ is considered as

additive or not, when a group of oscillators fires at the same

time. The only requirement is that the impulse-intensity is non-

negative and is not zero for all oscillators simultaneously. In

[26] it was shown that the system also converges, when the

state-function f is non differentiable. In [27] the concavity of

the state-function was shown to be an unnecessary restriction.

It is shown that a linear state-function is sufficient for nearly

all systems to converge if multiple synchronous firing is

accounted for in an additive impulse intensity ǫ, and ǫ ≥ 1/n
holds.

Lucarelli and Wang show in [28] that a system also converges

if there is only a neighborhood-coupling. This means that the

firing of one oscillator can only be received by oscillators

which are situated within a certain Euclidean distance around

the emitting device. They use a linear state-function f(ϕ) = ϕ
and a different update model which can be described as

follows:

xi = 1 ⇒ xj → min(1, xj + ǫxj), ∀j 6= i (2)

With this update model the state advance is dependent on

the current state of the affected device. If the state is close

to zero, then this update rule will change the phase relatively

little, while towards the end of the cycle the node will become

more and more sensitive to incoming flash messages. Note,

that with this state-function f the state x and phase ϕ are the

same. Therefore Equation 2 can also be written as:

ϕi = 1 ⇒ ϕj → min(1, ϕj + ǫϕj), ∀j 6= i (3)

Experimental results show, that networks with such a linear

model can also be synchronized if the network dynamically

changes over time and even when it temporarily looses con-

nectivity. This model closely relates to the MANET scenario,



which we selected for our hop counting algorithm. In [29]

and [30] two algorithms are presented that also take delays

into account. Nevertheless, for simplicity we base our hop

counting algorithm on the synchronization according to the

model of Lucarelli and Wang, neglecting message delays at

first.

Nature-inspired synchronization has already been used suc-

cessfully to implement an energy-efficient communication

mechanism in MANETs [31]–[33]. Here, we use the syn-

chronization as a precondition for a signal-based hop counting

algorithm. The objective is that all devices in the network can

derive their hop count, with respect to a reference device, from

the phase shift of a second signal. The hop count refers to the

number of relay nodes needed at minimum for two devices to

communicate with each other. For sufficiently dense networks,

this indicator also holds information about the distance of two

nodes [5]. Many methods have been proposed to extract a

distance estimate between nodes from known hop count and

to use it for localization of the nodes [6], [34]–[43]. In the

work presented here, we show that by a deliberately introduced

asynchrony in an otherwise synchronous network, the hop

count information can be encoded in the timing of an emitted

signal. Furthermore, we develop a method to derive a distance

estimate from the point of time of receiving a signal from other

devices, and we show that this method can be used to save

energy in the process of distance estimation. Additionally, it

is shown that the resulting distance estimates have a higher

accuracy compared to estimates produced via asynchronous

message exchange.

III. FIREFLY-INSPIRED HOP COUNTING (FIHC)

In distributed computing systems the exchange of messages

is a major factor influencing the performance of the system

and the lifetime of the devices involved [44], [45]. To reduce

the energy consumption during hop count determination in a

MANET, we present an algorithm called Firefly-Inspired Hop

Counting (FIHC). In this section, we present the idea of the

FIHC, show how the algorithm works, and discuss its ad-

vantages compared to an approach based on an asynchronous

exchange of messages.

A. Concept

In literature, hop counts are calculated using an algorithm

sometimes referred to as Gradient Algorithm [5], [38]. In the

Gradient Algorithm, a node, called anchor node, starts by

sending a message with value 0. The anchor node denotes

the device to which all other devices are supposed to count

their hops, i.e. to which they estimate their distance. When a

device receives such gradient messages from its neighbors, it

selects the minimum value it received, increments it by one

and forwards it to its neighbors accordingly. The algorithm is

repeated several times, before all devices in the network have

calculated their hop count. In case of dynamic networks, the

algorithm is repeated constantly, from time to time, to adapt

to changes in the positions of the devices. The idea of firefly-

inspired hop counting (FIHC) is to determine the hop counts

in a network using a timed binary signal, instead of integer

messages. This enables very simple devices to derive hop

counts and, thus, their location within a network and reduces

the message overhead, as well as the energy consumption

of the devices. For FIHC we first need to synchronize all

devices in the network. For this we use the firefly algorithm

described in [28] because it describes a distributed way of

synchronization and, therefore, is suitable for a MANET

environment. When the network is in synchrony, a second

signal is used which each device sends with a specific delay to

the synchronized signal. The delay represents the hop count

of the device, in a way that all devices sending the second

signal at the same time also have the same hop count. Further

on, we call the first signal, which is used for synchronization

(sync-signal), and the delayed, second signal, which is used

for hop counting (hc-signal). To be able to use signals for

the transport of information we need to provide a method of

encoding and decoding the information.

a) Encoding: To be able to encode the information about

the hop count of a device in the phase shift, the phase shift has

to be unique for any hop count. Assuming that a signal can

be received immediately after sending, as long as the devices

are situated within the communication range of each other,

a distinct correlation between phase and hop count can be

established as follows. If a device i is located hi hops away

from a reference device, its hc-signal is emitted, when its

phase has the value hi

hi+1
.

Lemma III.1. Any signal received at phase hi

hi+1
belongs to

a device with distinct hop count hi.

Proof: Let hi ≥ 0, hj ≥ 0 be the hop counts of device i
and j, and hi 6= hj . It then holds:

hi 6= hj

⇒ hi ∗ hj + hi 6= hj ∗ hi + hj

⇒ hi ∗ (hj + 1) 6= hj ∗ (hi + 1)

⇒
hi

hi + 1
6=

hj

hj + 1

Also, hi

hi+1
< 1.

For example, a device which is two hops away from a

reference device emits its hc-signal, when the phase of the

sync-signal has the value 2

2+1
= 2

3
.

b) Decoding: For decoding, Equation 4 is used. Let ϕi

be the value of the sync-signal’s phase of device i + 1 when

it receives the first hc-signal from its neighbors. First signal

means, that it is the first signal received by any neighbor during

the current period of the device’s sync-signal. The hop count

can then be calculated as:

hi+1 = hi + 1 =
−ϕi

ϕi − 1
+ 1 (4)

for 0 ≤ ϕi < 1. The device would emit its own hc-signal

when its sync-signal phase takes on the value ϕi+1 = hi+1

hi+1+1
.

The FIHC algorithm for mobile ad hoc networks now

consists of two steps:



• Step I: Synchronization of all devices using the firefly

algorithm

• Step II: Determination of the hop count through inten-

tional phase shifting of the hc-signal.

For the first step we use the linear model of Lucarelli and

Wang [28], because it allows for synchronization without the

need of all-to-all coupling. Also, the algorithm is suitable for

synchronization of temporarily disconnected networks and

dynamically changing links between nodes, as experiments

presented in [28] promise. The state-function f is linear and

identical for all devices with f(ϕ) = ϕ, the phase ϕ and state

x are identical and we will, therefore, directly refer to the

phase change from here on. Each device sends a sync-signal

(fires) at the end of its period, e.g. when its phase has the

value 1. Figure 3 shows this procedure and the relation of

phase and period.

Time

Fig. 3. Relation between phase and time. Devices fire when their phase has
the value 1.

The interaction between a firing device j and a neighboring

device i is shown in Equation 3.

Thus, the influence of a received firing signal on the phase

of a device is not constant but depends on the current phase

at the moment of reception. If a firing signal is received at the

beginning of a period, the time until the receiving device fires

next is shortened by a small amount. A firing signal received at

the end of the period has a bigger influence and, under specific

circumstances, leads to synchronization of the two devices. We

assume that devices, where the phase is shifted to the value 1
due to the effect of another firing device, do not emit a signal

at this moment but earliest at the end of the next period. In

our model devices cannot distinguish a single firing device

from a group of synchronously firing devices. We chose this

constraint because in real applications it might technically be

difficult to recognize how many signals are sent at the same

time. Also, we assume that devices do not respond with phase

shifts to received signals while they are firing, keeping the

phase at value 1.

The determination of hop counts starts, when all devices are

synchronous. It was not the main focus of this work to find

decentralized mechanisms to determine whether a network is

synchronous. Nevertheless, we run some experiments which

indicate that, in many cases, it is sufficient when each de-

vice checks whether its neighborhood is in synchrony before

starting the hop count process. For hop counting a second

signal, the hc-signal, is used. It can be reasonable to use only

one signal after successful synchronization if the network is

a closed system, where no new devices join the network and

have to be synchronized with the other devices.

We assume that all devices in the network want to determine

their hop count with respect to one specific reference device.

To do this, the reference device periodically sends the hc-

signal, when the phase of its sync-signal has the value 0,

e.g. at the beginning of its sync-period. A device i, which

is not the reference device, has to emit its hc-signal when the

phase of its sync-signal takes on the value of hi

hi+1
, with hi

being the device’s hop count. To find out the value of hi the

device listens to the earliest hc-signal that it receives from its

neighbors and applies Equation 4. If 0 ≤ hi < hj , we have
hi

hi+1
<

hj

hj+1
and, thus, the phase shift is smaller with lower

hop count of a device.

Figure 4 shows an example of four devices which have to find

their hop count, assuming that they are already synchronized.

The reference device starts sending an hc-signal when the

sync-signal phase has the value ϕref = 0. When device I

receives this signal its sync-signal phase is also ϕI = 0, so

it knows that its hop count is 1 and emits its hc-signal at

sync-phase ϕI = 1

2
. Device II receives the signal at sync-

phase ϕII = 1

2
and uses Equation 4 to calculate its own hop

count with 2 and emits its signal at ϕII = 2

3
. Analogously,

the fourth device III will send its hc-signal at sync-phase value

ϕIII = 3

4
.

Time

Time

Time

Time

Reference device

Device

Device

Device

Fig. 4. Hop counting via intentional phase shifting.

The previously explained relation between phase value and

hop count entails some significant benefits compared to hop

counting via asynchronous message exchange:

1) Because of hi > hj ≥ 0, it also holds that hi

hi+1
>

hj

hj+1

and hi

hi+1
< 1. The devices, thus, emit signals in their

ascending order of hop counts. Under the restriction

that these signals are received by all devices within

communication range without any delay and not consid-

ering network mobility, each device knows its hop count

within one period of the sync-signal. The asynchronous

message exchange algorithm, on the other hand, can take

many periods (depending on the network size) until all



devices in the network determined their hop count.

2) Each device knows its hop count immediately after the

first reception of a hc-signal from any of its neighbors

and can ignore all other signals for the rest of its

period. During this time the communication module is

not needed for listening anymore and can be switched

off to save energy. Asynchronous message exchange

algorithms require all devices to constantly listen to new

messages sent by neighbors.

3) Only the time of the signal reception is important and

not the content of the message. Therefore, the message

can be a binary value, as opposed to integer values

needed for hop counting based on asynchronous mes-

sage exchange. This reduces the length of the message,

possibly reducing the use of the communication module

even further, and it enables the hop count algorithm

to be used for devices which have a very rudimentary

communication module.

IV. EXPERIMENTAL STUDY

We performed two sets of experiments to analyze our

proposed firefly-inspired hop counting method. The first set

of experiments contributes some insights about the success

of synchronization using the model proposed in [28] with

neighborhood-coupling. The second set of experiments com-

pares the signal-based hop counting with message-based hop

counting, when used for distance estimation. We investigate

the algorithm under static as well as dynamic conditions.

A. Scenario and Settings

For the experiments we consider a simulation of n identical

devices placed randomly on a square plane according to a

uniform distribution. The reference device is placed at the

center of the environment and is supposed to be static during

all experiments. Figure 5 shows the experiment scenario.

To handle the simultaneous mutual influences of the syn-

chronization model, we decided to implement a time-discrete

model. For this, the period is divided into m time slots. In

each time slot, first, the phase of all devices is incremented

by one time step (t = 1

m
), then, it is checked for all devices

whether the phase of the device reached the value 1. If so,

the device fires and all devices within communication range

are marked. When the second step is finished, the phase of

all marked devices is incremented according to Equation 3.

We do not need to consider the influence of these devices on

their neighborhood, because we assumed devices, which were

shifted to a firing state, do not fire in the same period, but

earliest one period later.

For the experiments, the period T is divided into m = 100
time slots. Devices can communicate, e.g. receive signals

or exchange messages, when their Euclidean distance d is

less or equal than a specific value r, which denotes the

communication range. r is measured relative to the width

of the environment, i.e. a range of 0.1 corresponds to 10%
of the environment’s width. This setting corresponds to the

unit-disc model, widely used in ad hoc network simulation

as a simplified model for the communication structure of a

network. We do not take into account message delay, i.e.

the signals or messages are assumed to be received at the

moment of sending. To evaluate the performance of FIHC we

implemented a very simple mobility model where each device

moves with a probability of 1% in each time slot to a randomly

chosen position which lies within a square of dimension r× r
around its current position (cf. Figure 6). If the device would

leave the environment due to a movement, the move is either

only executed in the dimension, where the device does not

leave the plane, or, if this is not possible, the device is not

moved at all.

Fig. 5. Experiment scenario Fig. 6. Mobility pattern

B. Synchronization of Mobile Devices with Neighborhood-

Coupling

In this section, we investigate the described synchronization

algorithm in terms of the duration and success of complete

network synchronization. To see the effect of the network size

n (total number of devices), neighborhood density d (average

number of neighbors per device), and impulse intensity ǫ, we

test the following parameters:

n : 500 and 1000

d : 10, 20, 30, ..., 240 and 250

ǫ : 0.05, 0.10 and 0.15

The average number of neighbors d denotes the average

amount of neighbors which a device has, that is located

further than a distance of r from the border of the environ-

ment. We test all possible parameter combinations in both

static and dynamic networks. Each experiment is repeated 30

times and an experiment is classified as failed if there is no

complete synchronization after 300 periods. If and when the

synchronization is successful, is determined in a centralized

way by comparing the phases of all devices. Although, in

practice, there should be a decentralized way for determining

whether a network is synchronized, this is not subject to our

investigations.

Figure 7 shows the percentage of successfully synchronized

experiments in a static network of n = 500 devices with

respect to different average neighborhood sizes d. As expected,

the synchronization success increases with increasing impulse

intensity ǫ until it reaches almost 100% for ǫ = 0.15 through-

out all regarded neighborhood densities. The neighborhood

density d does not seem to have an obvious effect on the

success rate. It slightly increases proportionally, especially

for ǫ = 0.1, but the results are very volatile and a clear



relation cannot be observed. In contrast to the neighborhood

density the impulse intensity obviously has a strong impact.

While the success rate fluctuates between 30% and 90% for

ǫ = 0.5, it is quite stable for ǫ = 0.1, and is even more

stable for ǫ = 0.15. Figure 8 shows the time needed for

synchronization for the successful experiments. The duration

of synchronization decreases with increasing neighborhood

density for ǫ = 0.05 and ǫ = 0.1. The degression can be

explained easily, because the firing influences more devices

when the neigbhorhood density is higher. On the other hand,

this does not improve the success rate, so we conclude that

neighborhood density accelerates synchronization but does

not make it more probable. For ǫ = 0.15, the increase

of neighborhood density has first a positive impact and for

approximately d = 170 turns into a negative impact. These two

experiments show that a higher impulse intensity can increase

the success rate for synchronization but also slows down the

synchronization process for networks with high neighborhood

density.

Fig. 7. Percentage of successfully synchronized experiments for static
networks of size 500.

Fig. 8. Average synchronization time for static networks of size 500.

Because we reach a high success rate and simultaneously

low synchronization time with ǫ = 0.1, we use this impulse

intensity for the remaining experiments.

The next experiment tests the influence of network size on

the synchronization process. For this, we repeated the same

experiment, as described before, in a network with 1000

nodes. The results for synchronization success differ only

slightly with the trend that small neighborhood sizes in a larger

network tend to have a lower success rate, whereas larger

neighborhood sizes in larger networks also lead to slightly

higher success rates. Overall, the mean average success rate

for n = 500 lies at 97.3%, and for n = 1000 at 96.27%. Also

the sample standard deviation is less for the smaller network

size with 4.5% compared to 11.9% for 1000 devices. This

indicates that a larger network is less likely to synchronize.

This discovery meets the intuitive expectation that it is more

difficult to synchronize a higher number of devices. When

looking at the synchronization time, we see similar results.

Figure 9(a) shows the results for both network sizes indicating

that not only the success rate is worse in large networks, but

also the duration for synchronizing the devices is higher. For

further experiments we set the network size to 500 devices.

The final experiment shows the influence of mobility on

the synchronization success and duration. The success of syn-

chronization in mobile networks has a very similar behavior

as the success rate for larger networks. The percentage of

successfully synchronized experiments in dynamic networks

is lower than in static networks when considering small neigh-

borhood sizes. With higher neighborhood sizes the results

change and dynamic networks synchronize more often than

static ones. On average, both experiments show a success

rate of 97.3% in static and 97.7% in dynamic networks.

The sample standard deviation is 4.51% for static and 7.5%
for dynamic networks confirming the similarity of dynamic

and large-scale networks. The explanation is straight-forward.

When a device in a network moves, the effects on the other

devices are similar as if a new device would be added at

the new position. In [46] the same effect is used to improve

distance estimation results. Although the device was removed

from its old position, it did influence those devices before and

might already have led them to synchrony. Figure 9(b) shows

the results for synchronization time, which is also higher for

dynamic networks.

(a) Network size (b) Mobility

Fig. 9. Time for synchronization in networks of scale n = 500 and n =

1000 devices (a) and in static versus dynamic networks (b).

Overall, the experiments show that there is no guarantee

for synchronization in the network with the model proposed.

Further investigation indicate that this can be fixed when

relaxing the constraint that multiple firing signals are received

as one. The original model by Lucarelli and Wang takes

additive signals into account and further investigations show

that a network with an average neighborhood density of more

than 9 devices and additive firing, always synchronizes. Also,

the time for synchronization can be significantly reduced to

23 periods on average for static networks of size 500.



C. Distance estimation with firefly-inspired hop counting

The aim of the next experiment was to evaluate the per-

formance of the FIHC algorithm while used in an ad hoc

network application. For the application, we choose to use

FIHC for distance estimation between all nodes in the network

and one reference device, because this is a crucial part of

many localization algorithms [5]. In literature, many hop count

based distance estimation approaches have been proposed [6],

[34]–[43]. Most of them are based on the idea to estimate the

distance between a device i and j as:

dij = hij ∗ r (5)

where hij denotes the hop count from device i to j. Al-

though many improvements to this simple assessment have

been published, we will use the simple estimation method

to compare FIHC with an asynchronous message-based hop

counting algorithm, because the distance is simple to compute

and the deviation between the two methods becomes just as

visible as with any refined estimation technique.

For the experiments we divide the FIHC method into two sub-

categories: FIHC and FIHC delayed (FIHCd). The difference

is that in FIHC each device emits a signal according to its

own hop count, whether or not it already received a signal in

this period before. In case there is a signal after its own, the

hop count is adapted, and the device emits a second hc-signal

in the same period. As during FIHC all devices only react to

the first received signal in a period, there can be a maximum

of two hc-signals in the same period. The FIHCd algorithm

does not send any hc-signal unless it receives one from another

device (except for the reference device which always fires at

phase 0). Thus, for the delayed method there will be only one

hc-signal in each period. The third algorithm is the message-

based version, where each device has an asynchronous timer

and collects the messages from its neighbors during its timer’s

period. At the end of its period the device then calculates its

hop count and sends it to all its neighbors.

For the FIHC and FIHCd experiment the timers are assumed

to be synchronized. Hence, we do not take into account

the synchronization process during the experiment. The ex-

periments are performed in dynamic networks applying the

mobility model described at the beginning of this section.

For evaluation the mean absolute percentage error (MAPE)

was computed as 1

n−1

∑
i6=0

|di−di|
di

, with di being the Eu-

clidean distance between the reference device and device i
and di the estimate of this distance. The measurement starts,

when all devices have updated their hop count 6 times to

avoid initialization error, because it takes some time for the

information to propagate from the reference device throughout

the network, when asynchronous message-based hop counting

is used. Again, experiments are repeated 30 times and the

results are averaged.

Figure 10 shows the result for a network of size n = 500 and

an average neighborhood size of d = 20 and d = 100 devices.

In general, the MAPE is higher for the larger neighborhood

size. This result seems unexpected at first, because a larger

neighborhood usually provides more information and, thus, is

expected to improve the result, but, because in our experiment

setting a larger neighborhood also means a higher radius,

the hop count error gets multiplied. For d = 20 the FIHC

algorithm shows the lowest MAPE, followed by the message-

based hop counting and the worst error is achieved using

FIHCd. For d = 100 the order remains the same, although,

the spread between the results is much less pronounced. The

difference between FIHCd and the asynchronous message-

based hop counting almost disappeared.

Fig. 10. Mean absolute percentage error (MAPE) of the three distance
estimation algorithms for different neighborhood sizes.

To get an insight about the reasons for the performance

deviations, we distinguish between over- and underestimate

distances. Figure 11(a) shows the percentage of devices which

over- and underestimated their distance respectively and Figure

11(b) displays the corresponding MAPE for a neighborhood

size of d = 20. Three things become apparent. First, the

percentage of overestimation is significantly higher than the

percentage of underestimation for all three algorithms. Second,

the MAPE is lower for underestimated distances, and, third,

the performance order of the algorithms is reflected in the

distribution of underestimations. The fact that more than 80%
of the devices overestimate their distance, independently of

the algorithm, is a result of the simple distance estimation

method we applied. Due to the fact that the neighbor closest

to the referece device usually does not lie at the border of

the communication range, but somewhere closer to the device

itself, the distances are naturally overestimated throughout the

network (cf. [5], [47]).

(a) Percentage of devices which
over- and underestimate the dis-
tance.

(b) Average MAPE of devices
which over- and underestimate the
distance.

Fig. 11.

Underestimation, due to the proposed distance estimation

method, can only happen in a dynamic network. If a device



moves into a direction away from the reference device before

updating its own hop count to the new situation, it can

influence the surrounding devices in a way that they assume

to have a smaller hop count than they would have in a static

network. Figure 12 illustrates this effect. Here, three devices

have a lower hop count than they would get in a static network.

One, because it moved (orange star), the other two because

they adapt their own hop count to the moved device (green

stars). If a device, however, moves into the direction of the

reference device, this has no influence on the surrounding

devices because the hop count is always determined on the

basis of the minimum hop count in the neighborhood (cf.

Figure 13). As the distances are naturally overestimated, the

mobility reduces the error for the distance estimates and, thus,

the algorithms with higher proportion of underestimation have

a lower MAPE. This effect is discussed in great detail for

different kinds of mobility in [47].

Fig. 12. The influence of movements away from the reference device on the
hop count.

Fig. 13. The influence of movements towards the reference device on the
hop count.

The effect of mobility is higher, the further away a device

moves from the reference device before updating its hop count.

The underestimation, thus, increases proportionally to the time

between the hop count update and the signal emittance. For

the FIHCd the maximum time between the hop count update

and signal emittance is half a period:

Lemma IV.1. The time between receiving a firing signal ϕr

and emitting a firing signal ϕe is at maximum 1

2
.

Proof: If device i receives its first signal in a period p,

when its phase has the value ϕr = k
k+1

, it updates its own

hop count to the new value k+1 and emits a signal, when its

phase takes on the value ϕe =
k+1

k+2
.

The time between the update and the signal emittance can

be calculated as:

k + 1

k + 2
−

k

k + 1
=

1

(k + 1)(k + 2)

k≥0

≤
1

2

For FIHC the device also emits a signal when it did not

receive one before, which is usually the case if the device has

moved away from the reference node.

Lemma IV.2. If a device does not wait for the reception of a

signal, the time difference between the hop count update ϕu

and the signal emittance ϕe is more than one period.

Proof: If device i does not receive a signal from another

device in period p+ 1 and it updated its hop count in period

p to the value k + 1, it then holds:

k + 1

k + 2
+ 1−

k

k + 1
= 1 +

1

(k + 1)(k + 2)

k≥0

≥ 1

This means that devices using FIHC by tendency moved

further away from the reference device before emitting a new

signal, compared to devices using the FIHCd algorithm (cf.

Figure 14).

Fig. 14. Impact of moved distance on hop counts.

With the asynchronous message-based hop counting, the

maximum time between the reception of the decisive message

for the hop count and the signal emittance is at most one

period. We suppose, that this is the reason, why the values

for underestimation lie between the values of the other two

algorithms.

Even though the experiments indicate that the FIHC algo-

rithm is best used for distance estimation, this conclusion is

misleading. FIHC does simply produce the highest amount of

underestimation, which in turn corrects the natural overestima-

tion, but we expect FIHCd to perform best, when the distance

estimation method itself is more accurate, e.g. through any of

the mentioned refinement methods. We expect this, because the

hop counts are much more precise using FIHCd, due to fewer

time between update and influence of other devices through

signal emittance.

V. SUMMARY AND OUTLOOK

We presented FIHC and its slight variation FIHCd, two

algorithms for hop counting in mobile ad hoc networks, which

are based on synchronized timers and simple signaling. The

basic idea of FIHC is to use an intentional phase shift with

respect to a synchronous base signal to encode information

about the device’s hop count with respect to a reference device.

To realize the algorithm, we applied a nature-inspired syn-

chronization method based on a firefly algorithm introduced

by Lucarelli and Wang [28] and investigated the effects of

different network parameters on the duration and success of

synchronization. We found shortcomings, when devices were



not able to distinguish between the reception of a single and

multiple synchronous signals. In this case, synchronization

is still likely, but cannot be guaranteed. Another problem of

FIHC is that, so far, the approach needs to use a different

signal for each reference device. Also, the difference between

two hop count signals becomes very small with increasing

network size and, thereby, increasing hop counts. This can

cause problems in distinguishing between successive times of

reception. To avoid this problem, the period length can be

increased, but this also increases the overall time for synchro-

nization and hop count determination. Therefore, finding the

right period length for the respective network is a challenge.

On the other hand, FIHC can accelerate the process of hop

counting significantly compared to asynchronous message

exchange based methods. It also reduces the use of the commu-

nication module, providing the possibility to save energy and

extend the lifetime of the devices. Besides, the FIHCd version

of the algorithm has been proven to have a shorter maximum

time between update and signal emittance, which increases

the accuracy of hop count based distance estimates, especially

in dynamic networks. Even though the experiments indicate

that the FIHC algorithm is best used for distance estimation,

this is only due to the compensation of an overestimation-

error induced by the simple distance estimation technique.

When the distance estimation method itself is more accurate,

the compensation is not necessary and FIHCd is expected to

perform better in distance estimation, due to its lower degree of

underestimation during mobility. The way FIHC was designed,

it does not rely on the exchange of content between devices,

but encodes information in the timing of signals, making it an

alternative for localization of network devices with very basic

communication abilities.

For future work, we want to explore methods for abandoning

the need for employing a separate signal per reference device,

e.g. through signal modulation techniques.
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