
Deep Learning Adaptation with Word
Embeddings for Sentiment Analysis on Online

Course Reviews

Danilo Desśı1?[0000−0003−3843−3285], Mauro Dragoni2[0000−0003−0380−6571],
Gianni Fenu1[0000−0003−4668−2476], Mirko Marras1[0000−0003−1989−6057], and

Diego Reforgiato Recupero1[0000−0001−8646−6183]

1 Department of Mathematics and Computer Science, University of Cagliari, Via
Ospedale 72, 09124, Cagliari (Italy)

{danilo dessi, fenu, mirko.marras, diego.reforgiato}@unica.it
2 Fondazione Bruno Kessler, Trento, (Italy)

dragoni@fbk.eu

Abstract. Online educational platforms are enabling learners to con-
sume a great variety of content and share opinions on their learning
experience. The analysis of the sentiment behind such a collective in-
telligence represents a key element for supporting both instructors and
learning institutions on shaping the offered educational experience. Com-
bining Word Embedding representations and Deep Learning architec-
tures has made possible to design Sentiment Analysis systems able to
accurately measure the text polarity on several contexts. However, the
application of such representations and architectures on educational data
still appears limited. Therefore, considering the over-sensitiveness of the
emerging models to the context where the training data is collected,
conducting adaptation processes that target the e-learning context be-
comes crucial to unlock the full potential of a model. In this chapter,
we describe a Deep Learning approach that, starting from Word Em-
bedding representations, measures the sentiment polarity of textual re-
views posted by learners after attending online courses. Then, with a
set of experiments, we demonstrate how Word Embeddings trained on
smaller e-learning-specific resources are more effective with respect to
those trained on bigger general-purpose resources. Moreover, we show
the benefits achieved by combining Word Embeddings representations
with Deep Learning architectures instead of common Machine Learning
models. We expect that this chapter will help e-learning stakeholders to
get a clear view and shape the future research on this field.

Keywords: Big Data · Deep Learning · E-learning · Online Education
· Sentiment Analysis · Word Embedding · Domain Adaptation.

? Corresponding author email: danilo dessi@unica.it Phone number: +39 070 675 8756

2 Desśı et al.

1 Introduction

The advent of Social Web has enabled the development and the sharing of expe-
riences among people around the world. Individuals use online social platforms
to express opinions about products and/or services in a wide range of domains,
influencing the point of view and the behavior of their peers. Such user-generated
data, which generally come in form of text (e.g., reviews, tweets, wikis, blogs), is
often characterized by a positive or negative polarity according to the satisfac-
tion of people who write the content. Understanding individual’s satisfaction is
a key element for businesses, policy makers, organizations and social institutions
to hear and act on the voice of people. The automatic investigation performed on
top of person’s opinions in order to detect subjective information usually relies
on Sentiment Analysis (SA). Techniques and systems in this field aim to identify,
extract and classify emotions and sentiments by combining Natural Language
Processing (NLP), Text Mining and Computational Linguistics [18]. Exploiting
this artificial intelligence makes possible to replace or complement common prac-
tices (e.g., focus groups or surveys) for uncovering opinions, but still presents
challenges because of large sources and context dependencies of data.

SA approaches can be classified in supervised and unsupervised. Supervised
approaches require a training dataset annotated with numerical values left by
users or inferred from the content in the text (e.g., emoticons), and leverage it
to build a classifier which predicts a sentiment score for unseen data. Common
supervised pipelines first require the extraction of features from the input text,
such as terms frequencies, parts of speech, emotional words. Such features are
then fed into an algorithm which characterizes each input text with a positive
or negative polarity, i.e. sentiment detection. On the other hand, unsupervised
approaches rely on lexicons associated with sentiment scores in order to model
the sentiment polarity of a given text. While both types of approaches have been
shown feasible on the sentiment detection task, they tend to suffer from over-
sensitiveness to the context where the training data is collected. This results in
lower performance when applied to other contexts. Hence, understanding how
SA techniques work in emerging areas, such as online education, becomes crucial.

Online educational platforms deployed at large scale, such as Coursera3 and
Udemy4, are earning more and more attention as social spaces where students
can discover and consume a great variety of contents about many topics, and
share opinions regarding their educational experience [12]. Such collective intel-
ligence might be useful for various stakeholders, including peers who are plan-
ning to attend a given course, instructors who are interested in improving their
teaching practices and increasing students’ satisfaction, and providers who can
get benefits from the feedback left by users to refine tools and services in the
platform itself. With this in mind, these platforms can be envisioned as ded-
icated social media where discussions are limited to specific topics concerning
course content quality, teachers’ skills, and so on [7]. SA approaches on students’

3 https://www.coursera.org/
4 https://www.udemy.com/

Deep Learning Adaptation with Word Embeddings 3

opinions have recently started to receive the attention of the involved stakehold-
ers [19] and their design and development is still an open challenge.

The most prominent SA solutions leverage Word Embeddings, i.e., distributed
representations that model words properties in vectors of real numbers which
capture syntactic features and semantic word relationships. These resources has
been shown useful in NLP tasks, like Part-Of-Speech (POS) tagging [26] and
Word Analogy [29], and they have been also exploited for SA [23, 20, 15, 25, 41].
The generation of Word Embeddings is based on distributional co-occurrences
of adjacent words able to model words meanings that are not visible from their
surface. This exploits the fact that words with a similar meaning tend to be con-
nected by a given relation. For instance, the verbs utilize and use, which are syn-
onym although syntactically different, present similar sets of co-occurring words
and can be considered similar, while a third verb, such as play, has different co-
occurrences and should be considered different from both utilize and use. The
literature acknowledges that Word Embeddings generated from general-purpose
datasets, independently from any specific domain, under-perform the ones built
on top of texts coming from the target context of the SA task [17]. This happens
because context-trained Word Embeddings may capture specific patterns from
the target context, while generic-trained ones might have learned patterns acting
as noise for the target context. Hence, training Word Embeddings which better
fit the e-learning context is crucial to achieve high SA performance.

Deep Learning (DL) has emerged as subclass of the Machine Learning (ML)
area, where various neural network approaches are combined together for pattern
classification and regression tasks. It usually employs multiple layers able to learn
complex data representation, increasingly higher level features, and to correctly
classify or measure properties held by data. The success of DL is due to the new
advances in the ML field as well as to the ever more increasing computational
abilities of computers through the use of Graphical Processing Units (GPUs) [10].
DL has shown improvements in addressing SA tasks [2, 23, 20]. Using DL models
powered by Word Embeddings trained on the e-learning context can enable
improving the effectiveness of the dedicated SA systems.

In this chapter, we first discuss the state-of-the-art literature on DL and
Word Embeddings for SA (Section 2). We provide a high-level description of
the existing Word Embeddings generation algorithms (Section 3) and common
DL layers and networks (Section 4). Then, we propose a DL model, which is an
extension of our preliminary work in [11], trained on Word Embedding repre-
sentations coming from the e-learning context and able to predict a sentiment
score for reviews posted by learners (Section 5). We also report its experimental
evaluation on a large-scale dataset of online course reviews (Section 6). We show
how Word Embeddings trained on smaller context-specific textual resources are
more effective with respect to those trained on bigger general-purpose resources.
Moreover, we highlight the benefits derived from the combination of Word Em-
beddings and DL instead of common ML approaches. Finally, conclusions, open
challenges and future directions are discussed (Section 7). Code and models

4 Desśı et al.

accompanying this chapter would support data scientists and practitioners in
developing next-generation sentiment-aware e-learning platforms5.

2 State of the Art

In this section, we discuss the literature on DL and SA with a particular focus on
the E-learning domain. The reader notices that we discuss separately the use of
DL methods and Word Embeddings although they might be adopted together.

2.1 Sentiment Analysis in E-learning Systems

E-learning domain has recently gained the attention of SA in order to get knowl-
edge from new dynamics that E-learning platforms allow to. By leveraging stu-
dents’ emotions, it might be possible contributing to increase the students’ moti-
vation and improve learning processes. More specifically, the study of sentiments
in a E-learning platform can contribute to learning and teaching evaluation, in-
vestigate how technology can influence students’ learning process, evaluate the
use of E-learning tools, and improve learning content recommendations [36].

The measurement of sentiments and emotions in such platforms should be
as less invasive as possible for not disturbing the learning process and not in-
fluencing the overall opinion. The adoption of textual reviews left by students’
for analyzing sentiments and emotions is one of the less invasive techniques, be-
cause data collection and analysis are completely transparent for students. In
literature, various scenarios where SA was used to study learning aspects using
textual reviews can be found. For instance, one work embraces the use of Senti-
ment Analysis to mine students’ interactions in collaborative tools, guaranteeing
the students’ communication privacy in their opinions [9]. Another relevant area
that exploited SA was the teachers’ assessment. For example, the authors in [19]
adopted a Support Vector Machine to evaluate the teachers’ performance using
1040 comments of systems engineering students as a dataset. The evaluation of
the teaching-learning process was also object of study by means of SA in [8]. Its
authors adopted comments posted by both students and teachers. Similarly, the
authors in [37] studied text sentiment to build an adaptive learning environment
with improved recommendations. For example, they described how to choose a
learning activity for a student based on his/her goals and emotional profile.

The study of SA within the E-learning domain is still an open research area.
With this paper, we aim to make a contribution in this direction by designing
an effective DL model for improving sentiment detection in students’ reviews.

2.2 Deep Learning for Sentiment Analysis

ML has been extensively adopted for SA tasks, using different types of algorithm
and fitting various types of extracted features. For example, authors in [40] used

5 Please find code and models at https://github.com/mirkomarras/dl-sentiment-coco.

Deep Learning Adaptation with Word Embeddings 5

Maximum Entropy (ME) and Naive Bayes (NB) algorithms, adopting syntactical
and semantic patterns extracted from words on Twitter. Their method relies on
the concept of contextual semantic i.e. considering word co-occurrences in order
to extract the meaning of words [47]. In the evaluation on nine Twitter datasets
they obtained better performance when the ML algorithms were trained with
their method both at tweet and entity level. More recently, authors in [46] ap-
plied NB, ME, Stochastic Gradient Descent(SGD), and Support Vector Machine
(SVM) algorithms to classify movies reviews in a binary classification problem
(i.e. positive or negative evaluation of reviews). They showed that the use of a n-
gram model to represent reviews with the above algorithms obtains higher levels
of accuracy when the value n was small. Moreover, they showed that combining
uni-gram, bi-gram, and tri-gram features enabled to enhance the accuracy of
the method against the use of a single representation at once. ML methods rely
on lexical syntactical features representations which are derived from text, not
considering semantic relationships that can occur between words. Hence, in spite
of feature engineering advancements, there has been a growth of techniques to
infer semantics as DL that has emerged as an effective paradigm to automat-
ically learn continuously information from text. The first DL approaches were
studied at the begin of years 1990, but, due to high computational costs, they
lost interest among scientific communities [49]. However, in the last years, more
and more powerful computers and a huge availability of big data, DL approaches
became state-of-the-art solutions across various domains.

SA domain also experienced the influence of the wide spread of DL ap-
proaches. For example, in [15] a Convolutional Neural Network (CNN) composed
by two layers was designed to capture features from character to sentence level.
An ensemble DL method was proposed by [1], where various sentiment classifiers
trained on different sets of features were combined. They performed experiments
on six different datasets coming from Twitter and movies reviews. With their
experiments, they improved the state-of-art against DL baselines. Another ap-
proach to combine various classifiers with DL ones was also proposed by authors
in [32], where a SVM classifier was mounted on top of a 7-layer CNN in order to
complement the characteristics of each other and obtain a more advanced classi-
fier. With their variation they were able to obtain more than 3% of improvement
compared to a classic DL model. To learn continuous representations of words
for SA a combination of CNN with a Long-Short Term Memory (LSTM) was
exploited by authors in [45]. They were able to assign fixed-length vectors to
sentences of varying lengths, showing how DL approaches outperform common
ML algorithms. Although the use of DL models have showed amazing improve-
ments in many domains, they have not been deeply studied for applications in
E-learning, which can have benefits for exploring users’ opinions.

2.3 Word Embeddings for Sentiment Analysis

Word Embeddings have been successfully used in various domains, ranging from
behavioural targeting [4] to SA. Within the latter, they have been widely em-
ployed for improving accuracy of baselines methods not using Word Embed-

6 Desśı et al.

dings. As traditional Word Embeddings methods do not usually take into ac-
count words distributions for a specific task, resulting representations might lose
important information for a given task. In the context of SA, authors in [24]
incorporated prior knowledge at both word and document level with the aim to
investigate how contextual sentiment was influenced by each word. On the same
direction, other researchers [43] employed sentiment of text for the generation of
words embeddings. In particular, they joined context semantics and sentiment
characteristics so that in the embedding model neighboring words have both a
similar meaning and sentiment. The rationale behind that depends on the fact
that many words with a similar context are usually mapped on similar vector
representations even if they have an opposite sentiment polarity (e.g. bad and
good). Similarly, authors in [50] augmented sentiment information into semantic
word representations and extended Continuous Skip-gram model (Skip-gram),
coming up with two sentiment word embedding models. The learned sentiment
Word Embeddings were able to correctly represent sentiment and semantics.
Furthermore, authors in [27] presented a model that uses a mix of unsuper-
vised and supervised techniques to learn word vector representations, including
semantic term-document features. The model showed performances higher than
several ML methods adopted for sentiment detection. Focusing on Twitter senti-
ment classification, authors in [44] trained sentiment-sensitive words embeddings
through the adoption of three neural networks designed to detect the sentiment
polarity of texts. Their methods encoded sentiment information in the continuous
representation of words, and experiments on a benchmark Twitter classification
dataset in SemEval 2013 showed that it outperformed the competitors. Last but
not least, authors in [39] described a procedure with Word Embeddings for the
estimation of levels of negativity in a sample of 56,000 plenary speeches from
the Austrian parliament. They found out that the different levels of negativity
shown by speakers in different roles from government or opposition parties agree
with expected patterns indicated by common sense hypotheses. Their results
showed that the Word Embeddings approach offers a lot of potential for SA and
automated text analysis in the social sciences.

Several challenges have been created to solve SA polarity detection task
and several resulting winning systems employed Word Embeddings within their
core. For example, the Semantic Sentiment Analysis challenge [33, 35, 16, 34],
held within the ESWC conference, reached its fifth edition6[6]. The 2018 edi-
tion included a polarity detection task where participants were asked to train
their systems by using a combination of Word Embeddings already generated
by the organizers. The aim was to both validate the quality of their systems
(precision/recall analysis) and detect which combination of embeddings worked
better. SemEval is a workshop on semantic evaluation that takes place each
year and includes a set of tasks in NLP and Semantic Web (e.g., SA polarity
detection). One participant of the SemEval-2018 edition targeted the task of
irony detection in Twitter [48]. It employed a simple neural network architec-
ture of Multilayer Perceptron with various types of input features, including

6 http://www.maurodragoni.com/research/opinionmining/events/challenge-2018/

Deep Learning Adaptation with Word Embeddings 7

lexical, syntactic, semantic and polarity features. The proposed system used
300-dimensional pre-trained Word Embeddings from GloVe [31] to compute a
tweet embedding as the average of the embeddings of words in the tweet. By
applying latent semantic indexing and extracting tweet representation through
the Brown clustering algorithm, it achieved high performance in both subtasks
of binary and multi-class irony detection in tweets. It ranked third using the
accuracy metric and fifth using the F1 metric. Kaggle7 is the world’s largest
community of data scientists and offers ML competitions, a public data plat-
form, and a cloud-based workbench for data science. It hosts several challenges,
and some were related to SA. For instance, the Sentiment Analysis on Movie
Reviews challenge8 asked participants to label the movie reviews collected in
the Rotten Tomatoes dataset [30] on a scale of five values: negative, somewhat
negative, neutral, somewhat positive, positive. One recent challenge, namely Bag
of Words Meets Bags of Popcorn9, looked for DL models combined with Word
Embeddings for polarity detection of movie reviews collected by authors in [27].

3 Word Embedding Representations for Text Mining

Before using words in a model, they should be encoded as numbers. For instance,
a function can be used to map words to integers or to one-hot encode words.
When applying such an encoding to words, sparse vectors of high dimensionality
are commonly obtained. On large data sets, this could cause performance issues.
Additionally, such encoding functions do not take into account the semantics of
the words. On the other hand, Word Embeddings are dense vectors with lower
dimensionality, and the semantic relationships between words are reflected in
the distance and direction of the vectors. Each word is positioned into a multi-
dimensional space whose dimensions can be empirically chosen. The vector values
for a word represent its position in this embedding space. Synonyms are found
close to each other while words with opposite meanings have a large distance
between them. In this section, we introduce the most representative and recent
word embedding generator algorithms, highlighting their pros and cons.

3.1 Word2Vec

The Word2Vec word embedding generator [28] aims to detect the meaning and
semantic relations between words by exploiting the co-occurrence of words in
documents belonging to a given corpus. The core idea is to capture the context
of words, using ML approaches such as Recurrent or Deep Neural Networks.
In order to eliminate noise, Word2Vec operates on a corpus of sentences by
constructing a vocabulary based on the words that appear in the corpus more
often than a user-defined threshold. Then, it trains either the Continuous Bag-
Of-Words (CBOW) or the Skip-gram algorithm on the input documents to learn

7 https://www.kaggle.com/
8 https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
9 https://www.kaggle.com/c/word2vec-nlp-tutorial

8 Desśı et al.

the word vector representations. In this chapter, we will consider the Skip-gram
algorithm since it works well with small amount of training data, which is often
the case, and represents well even rare words or phrases.

3.2 GloVe

The GloVe [31] word embedding generator is a unsupervised learning algorithm
developed by Stanford. It creates word embeddings by aggregating global word-
word co-occurrence matrices from a corpus. The resulting embeddings show in-
teresting linear substructures of the word in the vector space. More precisely,
the algorithm consists of collecting word co-occurrence statistics in a form of
word co-occurrence matrix. Each element of this matrix represents how often
the word i appears in context of word j. The corpus is scanned in the following
manner: for each term, it looks for context terms within some area defined by a
windowsize before the term and a windowsize after the term, and it gives less
weight for more distant words.

3.3 FastText

The FastText [22] word embedding generator is an algorithm for learning word
representations. It differs form the previous ones in the sense that word vectors
as the ones learned in Word2Vec treat every single word as the smallest unit
whose vector representation is to be found, while FastText assumes a word to
be formed by n-grams of character. This new representation of a word is helpful
to find the vector representation for rare words. Since rare words could still be
broken into character n-grams, they could share these n-grams with the common
words. This can help to manage vector representations for words not present
in the dictionary since they can also be broken down into character n-grams.
Character n-grams embeddings tend to perform superior to Word2Vec and GloVe
on smaller datasets [3].

3.4 Intel

Intel proposes to improve the data structures in Word2Vec through the use of
mini-batching and negative sample sharing, allowing to solve the neural word
embedding generation problem using matrix multiply operations [21]. They ex-
plored different techniques to distribute Word2Vec computation across nodes
in a cluster, and demonstrate strong scalability. Their algorithm is suitable for
modern multi-core/many-core architectures and allows scaling up the computa-
tion near linearly across cores and nodes, and processing millions of words per
second. Intel embeddings generally differ from Word2Vec embeddings since the
number of updates of the model is different across these two implementations,
and the convergence is not equal for the same the number of epochs.

Deep Learning Adaptation with Word Embeddings 9

4 Deep Learning Components for Text Mining

DL has recently emerged as a new area within ML research. It embraces informa-
tion processing methods consisting of a sequence of complex non-linear models.
Each model forms a layer that independently processes data. The output of a
layer is fed as an input to the subsequent layer in the sequence until the final
output is obtained. In this section, we provide a high-level overview of the most
popular layers and networks used or combined for mining texts and, thus, useful
for conducting SA.

4.1 Feed-forward Neural Network (FNN)

Feed-forward Neural Networks (FNN) were one of the first and simplest com-
ponents applied to learn from data using DL paradigms. One or more levels of
nodes, often called perceptrons, are randomly joined by weighted connections in
a many-to-many fashion. These networks were historically thought in order to
simulate a biological model where nodes are neurons and links between them
represent synapses. For this reason, they are also called Multi-Layer Perceptron
(MLP) networks. On the basis of the input values fed into the network, nodes of
a certain level can be activated and their signal is broadcasted to the subsequent
level. In order to activate nodes of a subsequent level, the signal generated at a
given level is weighted and must be greater than a given threshold. Weights are
generally initialized with random values and adjusted during training in order
to minimize a predefined objective function. This family of networks has been
proved to be useful for pattern classification, but less suitable for labelling se-
quences since it does not take into account the sequence of input data. A simple
three-layer Feed-forward Neural Network is showed in Figure 1.

The sample FNN as it is accepts three-dimensional inputs and returns two-
dimensional outputs. Each node of a given level is connected to nodes of the
subsequent layer. The input data is fed into the network by means of Layer 1,
which acts as Input Layer, and then sent to the first hidden layer, i.e., Layer 2.
The output of this layer is finally propagated to Layer 3, which represents the
Output Layer. The action to move data from a layer to another by activating or
not the corresponding nodes is generally called forward pass of the network.

4.2 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNN) are tailored for processing data as a sequence.
In contrast to FNNs which commonly pass the input data directly from input to
output nodes, RNNs have cyclic or recurrent connections among nodes of distinct
levels. This makes possible to model the output of the network by taking into
account the entire history of the received input data. Recurrent connections
connect past data with the one that is currently being processed, simulating
a state memory. The forward pass is similar to the one in FNNs. The unique
difference is that the activation of a node depends on both the current input
and the previous status of the hidden layers. The text is fed into the network by

10 Desśı et al.

Layer n° 2
Hidden Layer

Layer n° 3
Output Layer

Layer n° 1
Input Layer

Fig. 1. An example of a Feed-forward Network composed by three layers.

means of vector representations that are recurrently processed. This means that
RNNs view a sample text as an ordered sequence of word identifiers, differently
from common FNNs working on hand-crafted inputs, e.g., Bag of Words (BOW).

In a wide range of applications, data can present patterns from the past to the
future and vice versa. For instance, for classifying the sections of a given story,
it could be useful to have access to both future and past sections. However, the
future content of a text is ignored by common FNNs and RNNs, as they work
sequentially. Bidirectional RNNs (BiRNNs) let the network, at a given point in
time, to take information from both earlier and later data in the sequence, going
beyond the exposed limitations. The idea behind this kind of networks consists of
presenting the training data forwards and backwards by two hidden RNNs which
are then combined into a common output layer. This strategy makes possible to
find patterns that can be learned from both past and future history of data.

4.3 Long Short-Term Memory (LSTM) Network

Long Short-Term Memory (LSTM) networks are an RNN extension designed
to work on sequence problems and that has achieved state-of-the-art results on
challenging prediction tasks. LSTM networks employ recurrent connections and
add memory blocks in their recurrent hidden layers. These memory blocks save
the current temporal state during training and make possible to learn temporal
observations hidden in the input data. The fact of using connections as a memory
implies that the output of a LSTM network depends on the entire history of the
training data, not only on the current input sample. Moreover, using memory
blocks allows to relate the current data that is being processed with the data

Deep Learning Adaptation with Word Embeddings 11

processed long before, solving the problem experienced by common RNNs. For
this reason, LSTM networks have had a positive impact on sequence prediction
tasks. As stated for RNN, a bidirectional layer using two hidden LSTMs can be
leveraged to process data both forward and backward.

4.4 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) typically perform filtering operations
on the input nodes of a layer, abstracting and selecting only meaningful input
features. When CNNs are trained, the weights of links between nodes acting as
filter are defined. Such networks have been historically applied in the computer
vision field and, hence, are not directly applicable on texts as they are. To
overcome this limitation, a text must be converted into a vector representation,
and the convolutional filters are applied on this representation. A convolutional
filter is composed by a kernel that slides on the vector representation and repeats
the same function on each element until all the vectors have been covered. In
text mining, CNNs can be useful to detect the words characterizing a classes.

4.5 Normalization Layer (NL)

During training, the output of a given layer is affected by parameters and pro-
cesses used in previous layers. Small changes in the parameters set for a layer can
hence be propagated as the network becomes deeper, resulting in large changes
in the final output, i.e., the output of the last layer. Considering that the pa-
rameters are continuously changed to better fit the prediction task and that the
data distribution changes across levels, the variations within the parameters can
negatively influence the training, making it computationally expensive. To shape
input data with a standard distribution and improve training performance, some
Normalization Layers (NL) can be introduced. One of the most common normal-
ization layers is represented by Batch Normalization. This layer makes possible
to reduce the dependence of the optimization parameters from the input values,
avoiding over-fitting and making the training process more stable.

4.6 Attention Layer (AL)

Attention Layers (ALs) are often adopted before the last fully-connected layers
of a model. Attention mechanisms in neural networks serve to orient perception
as well as memory access. Attention layers filters the perceptions that can be
stored in memory, and filters them again on a second pass when they need to
be retrieved from memory. Neural networks can allocate attention, and they can
learn how to do so, by adjusting the weights they assign to various inputs. This
makes possible to solve traditional limits in various NLP tasks. For instance, tra-
ditional word vectors presume that a words meaning is relatively stable across
sentences. However, there could be massive differences in meaning for a single
word: e.g. lit (an adjective that describes something burning) and lit (an abbrevi-
ation for literature); or get (a verb for obtaining) and get (an animals offspring).

12 Desśı et al.

ALs can capture the shades of meaning for a given word that only emerge due
to its situation in a passage and its inter-relations with other words. Moreover,
ALs learn how to relate an input sequence to the output of the model in order to
pay selective attention on more relevant input features. For example, in order to
reflect the relation between inputs and outputs, an Attention layer may compute
an arithmetic mean of results of various layers according to a certain relevance.

4.7 Other Layers

There are also other layers that can be leveraged in order to fine-tune the per-
formance of a model. The most representative ones are described below.
Embedding Layer. An Embedding layer turns positive integers (indexes) into
dense vectors of fixed size chosen from a pre-initialized matrix. For an integer-
encoded text, the dense vector corresponding to those integers are selected.
Noise Layer. A Noise layer is usually employed to avoid model over-fitting. It
consists in modifying a fraction of input of layers, adding and subtracting some
values following a predefined distribution (e.g., Gaussian).
Dropout Layer. A Dropout layer may be seen as a particular type of a noise
layer. It assigns the value 0 to a randomly chosen fraction of its input data. The
name Dropout comes from the action to dropping some units of the input.
Dense Layer. A Dense layer is a densely-connected layer that is used to map
large unit inputs in a few unit results. For example, it may be used to define the
number of classes that a model returns, mapping hundred and thousand nodes
in a few number of classes.

5 Our Sentiment Predictor for E-Learning Reviews

This section serves as guide on designing sentiment prediction models for edu-
cational reviews, and presents practical information on how to implement such
systems. The main components of the proposed solution (Figure 2) and the ben-
efits of the designing choices for each of these components will be described. This
helps readers have a broader view of difficulties and solutions behind sentiment
prediction models, and make appropriate decisions during their design.

5.1 Review Splitting

The review splitting step serves to define the various input dataset splits while
developing the sentiment prediction model. Firstly, we consider the input dataset
as a set D of N reviews organized as follows:

D = {(text1, score1), ..., (textN , scoreN)} (1)

where texti is a textual review and scorei is an integer rating belonging to the
set C = {score1, ..., scoreM}.

During this step, we thus need to split input data D in three subsets, each for a
specific phase of the development:

Deep Learning Adaptation with Word Embeddings 13

Review Vectorization

Review Splitting

Word Embedding Modelling

Sentiment Model Training and Prediction

Word2Vec GloVe

FastText Intel

Dcreation Dtrain Dtest

D’train D’test

Word Embeddings E Deep Neural Network Model

Reviews

D

Rating score

Fig. 2. The base components of our sentiment prediction model.

1. Dcreation: the sample of data used to create word embeddings.
2. Dtrain: the sample of data used to fit the model (i.e., weights and biases).
3. Dtest: the sample of data used as the gold standard to evaluate the model.

In order to do this, we set up two split ratios and we assign the text-score pairs
in D to the different subsets Dcreation, Dtrain, Dtest according to them:

1. screation ∈ [0, 1]: the percentage of reviews for each class c ∈ C that are ran-
domly chosen from the set D to create word embeddings, yielding Dcreation.

2. straining ∈ [0, 1]: the percentage of reviews for each class c ∈ C that are
randomly chosen from D \Dcreation to train the model, yielding Dtrain.

The remaining reviews represent Dtest. The overall procedure ensures that the
subsets are disjoint and their union covers the entire dataset D.

5.2 Word Embedding Modelling

The state-of-the-art method to model a word with a vector is using word em-
beddings; it is common to see word embeddings that are 256-dimensional, 512-
dimensional, or 1,024-dimensional when dealing with very large vocabularies.
There are two ways to generate and leverage word embeddings:

14 Desśı et al.

1. Learn word embeddings jointly with the same context we are interested in
by starting with random word vectors and, then, learning word vectors along
the process, iteratively.

2. Load into the sentiment prediction model the word embeddings pre-computed
using a different ML task than the one we are interested in. If the amount
of training data in Dtrain is small, this is the common solution.

To the best of our knowledge, no word embedding database specifically tar-
gets the e-learning context. Therefore, this step goes through the first most gen-
eral solution of learning word embeddings from scratch, while we also use word
embedding pre-computed on other contexts for comparison along the chapter.

In order to generate word embeddings from scratch, the subset of pre-processed
reviews Dcreation was employed. We concatenated them into a large corpus and
this corpus was fed into a given word embedding generation algorithm selected
among the following ones: Word2Vec, GloVe, FastText, or Intel. Each of them
outputs a set of feature vectors E for words in that corpus. The feature values
are non-negative real numbers. For each distinct word w in the vocabulary in
Dcreation, there exists a corresponding feature vector e ∈ E which represents the
word embedding for that word. All the feature vectors share the same size. The
size of the resulting word embeddings and of the window where word embeddings
generator algorithms look at contextual words can be arbitrarily selected.

5.3 Review Vectorization

The review vectorization is the process of transforming each review into a nu-
meric sequence. This can be done in multiple ways (e.g., segment text into words
and transform each word into a vector, segment text into characters and trans-
form each character into a vector, extract n-grams of words or characters, and
transform each n-gram into a vector). The different units into which the text
is broken (words, characters, or n-grams) are called tokens, and breaking text
into such tokens is called tokenization. The process consists of applying some
tokenization schemes and then associating numeric vectors with the generated
tokens. These vectors, packed into sequences, are needed for manipulating text
during sentiment model training and inference.

In order to be treated by machines, we need to turn the datasets Dtrain and
Dtest into a set of integer-encoded pre-processed reviews defines as follows:

D′train = {(text′1, score1), ..., (text′K , scoreK)}∀(texti, scorei) ∈ Dtrain (2)

D′test = {(text′1, score1), ..., (text′J , scoreJ)}∀(texti, scorei) ∈ Dtest (3)

where each pair (text′i, scorei) includes an integer encoding of the text comment
texti and the original rating scorei from Dtrain and Dtest, respectively.

Deep Learning Adaptation with Word Embeddings 15

The process for generating D′train and D′test works as follows. Each word has
a unique associated integer value chosen from a range going from 0 to |V | − 1,
where V is the vocabulary of words in D. For each input review (texti, scorei),
we build an integer-encoded vector text′i from texti, where an integer value at
position j in text′i represents the mapped value for word w for that position in
texti. The sets D′train and D′test are thus vectorized.

5.4 Sentiment Model Definition

This step is necessary for defining the architecture of the deep neural network
which takes pairs of integer-encoded texts and sentiment scores, maps such texts
into word embeddings, and tries to predict the sentiment score from them.

The proposed architecture tailored for sentiment score prediction is shown in
Fig. 3. Given that our training process requires running the network on a rather
large corpus, our design choices are mainly driven by the computational efficiency
of the network. Hence, differently from [2], which presents an architecture with
two Bidirectional LSTM layers, we adopt a single Bidirectional LSTM layer
architecture. Moreover, we configure the last layer to return a single continuous
value, i.e., the predicted sentiment score. Therefore, our network is composed by
an Embedding layer followed by a Bidirectional LSTM layer, a Neural Attention
mechanism, and a Dense layer. Each layer works as follows:

1. Embedding Layer takes a two-dimensional tensor of shape (N,M) as in-
put, where N represents the number of integer-encoded text comment sam-
ples, while M the maximum sequence length of such samples. Each entry is a
sequence of integers passed by the Input Layer. The output of the Embedding
layer is a two-dimensional vector with one embedding for each word w in the
input sequence of words of each text comment t. Before receiving data, the
Embedding Layer loads the pre-trained word embeddings computed during
the previous step as weights. Such weights are frozen, so that the pre-trained
parts are not updated during training and testing to avoid forgetting what
they already know.

2. Bidirectional LSTM Layer is an extension of the traditional LSTM that
generally improves model performance on sequence classification problems.
It trains two LSTM instead of just one: the first is trained on the input
sequence as it is and the second on a reversed copy of the input sequence. The
forward and backward outputs are then concatenated before being passed on
to the next layer, and this is the method often used in studies of bidirectional
LSTM. Through this layer, the model is able to analyze a reviews as a whole,
binding first and last words coming up with a more precise score. Moreover,
exploiting the bidirectional version of a LSTM, the model is able to get
patterns that depend on the learners’ writing style.

3. Attention Layer enables the network referring back to the input sequence,
instead of forcing it to encode all the information forward into one fixed-
length vector. It takes n arguments y1, ..., yn and a context c. It returns a

16 Desśı et al.

Embedding Layer Input size: 300
Output size: 300

Gaussian Noise Layer Input size: 300
Output size: 300

Dropout Layer Input size: 300
Output size: 300

Bidirectional LSTM Layer Input size: 300
Output size: 128

Dropout Layer Input size: 128
Output size: 128

Attention Layer Input size: 128
Output size: 128

Dropout Layer Input size: 128
Output size: 128

Dense Layer Input size: 128
Output size: 1

Fig. 3. The proposed deep learning model for sentiment score regression designed to
leverage 300-dimensional input text sequences.

Deep Learning Adaptation with Word Embeddings 17

vector z which is supposed to be the summary of the yi, focusing on infor-
mation linked to the context c. More specifically, in our model it returns a
weighted arithmetic mean of the yi, and the weights are chosen according to
the relevance of each yi given the context c. This step can improve perfor-
mance, detecting which words more influence the sentiment assignments.

4. Dense Layer is a regular densely-connected layer implementing a func-
tion output = activation(dot(input, kernel) + bias) where activation is the
element-wise activation function, while kernel and bias are a weights ma-
trix and a bias vector created by the layer, respectively. The layer uses a
linear activation a(x) = x and provides a single output unit representing the
sentiment score.

To mitigate the overfitting, the network augments the cost function within
layers with l2-norm regularization terms for the parameters of the network. It
also uses Gaussian Noise and Dropout layers to prevent feature co-adaptation.

5.5 Sentiment Model Training and prediction

The fresh instance of the sentiment model takes a set of neural Word Embed-
dings E together with a set of pre-processed reviews D′train, as input. With these
embeddings and reviews, the component trains the deep neural network. As an
objective, the network measures the MSE (Mean Squared Error) of the pre-
dicted sentiment score against the gold standard value for each input sequence.
Parameters are optimized using RMSProp (Root Mean Square Propagation) [38]
with learning rate = 0.001. The network was configured for training on batches
of size 128 along 20 epochs, shuffling batches between consecutive epochs. The
trained deep neural network takes a set of unseen reviews D′test and returns the
sentiment score score′ predicted for that text comment text′, as output.

6 Experimental Evaluation

6.1 Dataset

The dataset used for our experiments is COCO [13], which includes data collected
from one of the most popular online course platforms. It contains more than 43K
courses distributed in 35 languages, involving over 16K instructors and 2,5M
learners who provided 4.5M reviews about online courses.

In our experiments, we considered only reviews with non-empty English text
comments. They are 1.396.312 in COCO. Each review includes a rating ranging
from 0.5 to 5 with step of 0.5. Considering that our approach supports only
integer ratings, we mapped COCO ratings on a scale from 0 to 9 with steps of 1.
The dataset D included 1.396.312 reviews and the split ratios were screation =
strain = 0.90. Those values were selected since we wanted to keep both training
and testing sets with balanced rating distributions. Moreover, we performed 10-
fold stratified cross validation. Hence, 1.396.312 - 6.500 * 10 reviews were put in
Dcreation to create embeddings, while 5.850 * 10 were put in Dtrain for training
the model and 650 * 10 were put in Dtest for testing it during each fold.

18 Desśı et al.

6.2 Baselines

We experimented and compared our deep learning approach with the following
common ML algorithms:

– Support Vector Machine. Support Vector Machine (SVM) algorithm works
by defining boundaries through hyperplanes in order to separate a class
from the others. The aim of this algorithm is building hyperplanes among
data samples in such a way that the separation between classes is as large
as possible. The algorithm takes labeled pairs (xi, yi) where xi is a vector
representation of input data, and yi is a numerical label. The algorithm then
applies an optimization function in order to separate classes. When it is
used for textual input, it is common to transform the text input into vectors
of numbers representing features. To name an example, authors in [14] used
vectors of numbers for assigning words with syntactical and semantic features
to apply a SVM classifier. In the regression variant of SVM, generally named
SVR (Support Vector Regressor), the algorithm try to find hyperplanes that
can predict the distribution of information.

– Random Forests. Random Forests (RF) is based on an ensemble of decision
trees, where each tree is independently trained and votes for a class for
the data presented as an input [5]. We use a Random Forest with 10 trees
with depth 20. Essentially, each decision tree splits data into smaller data
groups based on the features of the data until there are small enough sets
of data that only have data points with the same label. These splits are
chosen according to a purity measure and, at each node, the algorithm tries
to maximize the gain on it. For our regression problem, we consider Mean
Squared Error (MSE).

– Feed-forward Neural Network. We used a common Feed-forward Neural Net-
work (FF) with 10 hidden layers, as described in Section 4.1.

We exploited the regression algorithm implementations available within the
scikit-learn library10. To feed data into these baseline models, we compute the
average of word embeddings for each review. More specifically, given a review r
with terms {t0, ..., tn−1}, we took the associated word embeddings {w0, ..., wn−1}
and computed their average w, which is used to represent the review text.

6.3 Metrics

In order to evaluate the performance of our model, we measured the MSE (Mean
Squared Error) and the MAE (Mean Absolute Error) scores. More precisely,
MAE and MSE are defined as follows:

MAE(y, ŷ) =
1

n
·
n−1∑
i=0

|yi − ŷi| (4)

10 https://scikit-learn.org/stable/index.html

Deep Learning Adaptation with Word Embeddings 19

MSE(y, ŷ) =
1

n
·
n−1∑
i=0

(yi − ŷi)
2 (5)

where yi is a true target value, ŷi is a predicted target value, and n is the number
of samples for both (4) and (5). It follows that given two tests t1 and t2, t1 is
better than t2 if its related MSE and MAE are lower. During the experiments,
we maintained the proportion of the reviews for each of the 10 classes of the
original dataset for both training and test sets [42].

6.4 Deep Neural Network Model Regressor Performance

Figure 4 reports the MAE of regressors used in our experiments. First of all, our
results confirm that Neural Networks, both using a single Feed-forward layer
and using our model, perform better than common ML algorithms, showing a
lower error. Comparing the Feed-forward baseline with our Deep Neural Network
model, there is a little error difference. It is possible to note that the combination
FF + FastText obtains similar performances of both DNNR + GloVe and DNNR
+ FastText. The best performance was obtained by DNNR + Word2Vec. Similar
considerations also apply when analyzing the MSE. In fact the DNNR model
gets best performance as well. In contrast with the MAE, no baseline obtains
performances similar to our model.

1,85
1,90

1,84
1,88

1,63

1,91 1,92 1,93

1,59
1,63

1,53 1,55

1,41

1,54 1,55 1,52

1,0

1,2

1,4

1,6

1,8

2,0

RF +
 W

ord2Vec

RF +
 GloVe

RF +
 Fast

Te
xt

RF +
 In

tel

SV
R + W

ord2Vec

SV
R + GloVe

SV
R + Fast

Te
xt

SV
R + In

tel

FF
 + W

ord2Vec

FF
 + GloVe

FF
 + Fast

Text

FF
 + In

tel

DNNR + W
ord

2Vec

DNNR + GloVe

DNNR + Fa
stT

ext

DNNR + In
tel

Fig. 4. Mean Absolute Error (MAE) of Experimented Regressors.

20 Desśı et al.

5,25
5,47

5,17
5,34

4,17

5,38 5,35 5,38

4,06

4,27

4,00
3,91

3,35

3,85 3,82
3,70

3,0

3,5

4,0

4,5

5,0

5,5

RF +
 W

ord2Vec

RF +
 GloVe

RF +
 Fast

Te
xt

RF +
 In

tel

SV
R + W

ord2Vec

SV
R + GloVe

SV
R + Fast

Te
xt

SV
R + In

tel

FF
 + W

ord2Vec

FF
 + GloVe

FF
 + Fast

Text

FF
 + In

tel

DNNR + W
ord

2Vec

DNNR + GloVe

DNNR + Fa
stT

ext

DNNR + In
tel

Fig. 5. Mean Square Error (MSE) of Experimented Regressors.

6.5 Contextual Word Embeddings Performance

This further experiment aims to show how the context-trained Word Embeddings
we generated have advantage over reference generic-trained Word Embeddings,
when they are fed into our deep neural network as frozen weights of the Embed-
ding Layer. In order to evaluate the effectiveness of our approach, we performed
experiments using embeddings of size 300 trained on COCO’s online course re-
views. We compared them against the following reference generic-trained Word
Embeddings of size 300 commonly adopted in literature:

– The Word2Vec11 Word Embeddings trained on a part of the Google News
dataset including 100 billion words with a vocabulary of 3 million words.

– The GloVe12 Word Embeddings trained on a Wikipedia dataset including
one billion words with a vocabulary of 400 thousand words.

– The FastText13 Word Embeddings trained on a Wikipedia dataset including
four billion words with a vocabulary of 1 million thousand words.

Context-trained Intel word embeddings are compared with generic Word2Vec
word embeddings because i) there are not public generic Intel word embeddings,
and ii) the Intel algorithm is an evolution of Word2Vec algorithm.

Figure 6 shows that there is not a relevant difference between context-trained
word and generic-trained embeddings when the MAE is used for the comparison.

11 https://code.google.com/archive/p/word2vec/
12 https://nlp.stanford.edu/projects/glove/
13 https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.vec

Deep Learning Adaptation with Word Embeddings 21

1,41

1,73

1,54 1,54 1,55

1,73

1,52

1,73

1,0

1,2

1,4

1,6

1,8

Word2Vec
Contextual

Word2Vec
Generic

GloVe
Contextual

GloVe
Generic

FastText
Contextual

FastText
Generic

Intel
Contextual

Intel
Generic

Fig. 6. Comparison between Contextual Word Embeddings and Generic Word Embed-
dings considering the Mean Absolute Error (MAE).

3,35

4,58

3,85
3,79 3,82

4,71

3,70

4,58

3,0

3,5

4,0

4,5

5,0

Word2Vec
Contextual

Word2Vec
Generic

GloVe
Contextual

GloVe
Generic

FastText
Contextual

FastText
Generic

Intel
Contextual

Intel
Generic

Fig. 7. Comparison between Contextual Word Embeddings and Generic Word Embed-
dings considering the Mean Square Error (MSE).

22 Desśı et al.

Nevertheless, it is worth underling how the type of embeddings enables to obtain
better results in the E-learning domain. Context-trained Word2Vec embeddings
show the lowest values of MAE compared to other embeddings types. In contrast,
when the MSE is considered, context-trained embeddings perform better, as
shown in Figure 7. In this case, context-trained embeddings have low values
of MSE in almost all cases except for the GloVe Word Embeddings. The best
performance was obtained by context-trained Word2Vec embeddings, proving
that i) Word2Vec is the best algorithm to learn word representations from our
dataset, and ii) context-trained Word Embeddings are able to capture specific
patterns of the E-learning domain. This makes possible to adapt our DL model
on the E-learning domain and improve the results in sentiment score prediction.

7 Conclusions, Open Challenges, and Future Directions

This chapter was structured around a case study on SA within the e-learning
context. By combining state-of-the-art DL methodologies and word embedding
text representations, we introduced and described a deep neural network aimed
to predict a sentiment score for text reviews left by learners after attending
online courses, as a targeted educational context.

The proposed chapter guides the readers on how to address this task by pro-
viding an overview of the common building blocks of a SA system, from input
text representations to neural network components, followed by a recipe which
combines them into a model able to outperform common ML baselines. As most
of the current approaches for SA are built on top of different word embedding
representations, we showed how some types of word embeddings can better rep-
resent the semantics behind the e-learning context and help the model to well
predict the sentiment score. Furthermore, considering that word embeddings
tend to be sensitive to the context where they are trained in and that the current
publicly-available word embeddings were trained on general-purpose resources,
we proved that the use of word embeddings generated from e-learning resources
enables the model to capture more peculiarities from this target context.

Research on SA has produced a variety of solid methods, but still poses some
interesting challenges that require further investigation:

1. Public Datasets and Models. Most SA studies in education have still used
rather small datasets which were not made public available and make difficult
to train a neural network. As education is a very heterogeneous research
field, differentiated into informal, non-formal and formal learning, a larger
collection with more diverse datasets is needed. Furthermore, sharing code
and pre-trained models has not been a common practice. Only few authors
made their code available, while, for others, people need to re-implement it
from scratch. More datasets and models should be shared.

2. Text Representation Modeling. Current approaches, such as Word2Vec,
exhibit limits which can help us understand future trends. For instance, there
is only one word embedding per word, i.e. word embeddings can only repre-
sent one vector for each word. Therefore, the term ”learned” only had one

Deep Learning Adaptation with Word Embeddings 23

meaning for ”I have learned that information last week” and ”The instructor
was a very learned individual”. Moreover, word embeddings are difficult to
train on large datasets, and, to tailor them to another context, they should be
trained from scratch. This requires large datasets on the target context and
high storage and computational resources. Finally, word embeddings have
been generally trained on a neural network with only few hidden layers, and
this has limited the semantic power of the corresponding representations.

3. Sentiment Prediction Model Design. SA systems have traditionally
used an FNN as the underlying architecture. However, its densely-connected
layers have access only to the current input and have no memory of any other
input that was already processed. Recent research showed that RNNs can
provide state-of-the-art embeddings that address most of the shortcomings
of previous approaches. Emerging systems were trained on a multilayer RNN
and learned word embeddings from context, enabling it to store more than
one vector per word based on the context it was used in. More advanced
architectures need further investigation.

4. Transfer Learning across Contexts. Existing models tend to be sensitive
to the context targeted by the underlying training data. This has favored
the creation of semantic models that, after being trained with data from a
given context, do not generalize well in other contexts. With the new avail-
ability of public datasets and pre-trained models, it will become easier to
plug them into a task different from the one they were originally thought.
Previously, performing SA required to train a model or use an API to get
the sentiment predictions. By sharing more pre-trained models, cooperation
between researchers in SA for education and researchers from other appli-
cation areas can be promoted. Hence, people could build a new service on
top of pre-trained models and quickly train them with small amounts of
context-specific data.

5. Model Explainablity and Interpretability. Most ML and DL algorithms
built into automation and artificial intelligence systems lack transparency,
and may contain an imprint of the unconscious biases of the data and algo-
rithms underlying them. Hence, it becomes important to understand how we
can predict what is going to be predicted, given a change in input or algorith-
mic parameters. Moreover, it requires attention how the internal mechanics
of the ML or DL system can be explained in human terms. As a context
like education looks to deploy artificial intelligence and DL systems, under-
standing how an algorithm is actually working can help to better align the
activities of data scientists and analysts with the key questions and needs of
the involved stakeholders.

6. Data and Algorithmic Bias Impact. With the advent of ML and DL,
addressing bias within education analytics will be a core priority due to sev-
eral reasons. For instance, some biases can be introduced through the use
of training data which is not an accurate sample of the target population
or is influenced by socio-cultural stereotypes. Moreover, the methods used
to collect or measure data and the algorithms leveraged for predicting sen-

24 Desśı et al.

timents can propagate biases. Future research should control these biases in
the developed models, promoting fair, transparent, and accountable systems.

7. Multi-Aspect Sentiment Modeling. SA in education has focused on de-
termining either the overall polarity (i.e., positive or negative) or the senti-
ment rating (e.g., one-to-five stars) of a review. However, only considering
overall ratings does not allow to represent the multiple potential aspects
on which an educational element can be reviewed (e.g., the course content,
the instructor, and the platform). To get insightful knowledge on how peo-
ple perceive each of them, more research taking into account these various,
potentially related aspects discussed within a single review is needed.

We expect that the case study on SA within the E-learning context covered
in this chapter will help researchers, developers and other interested people to
get a clear view and shape the future research on this field.

Acknowledgments

Danilo Dess̀ı and Mirko Marras acknowledge Sardinia Regional Government for
the financial support of their PhD scholarship (P.O.R. Sardegna F.S.E. Opera-
tional Programme of the Autonomous Region of Sardinia, European Social Fund
2014-2020, Axis III ”Education and Training”, Specific Goal 10.5).

The research leading to these results has received funding from the EU’s
Marie Curie training network PhilHumans - Personal Health Interfaces Lever-
aging HUman-MAchine Natural interactionS under grant agreement 812882.

Furthermore, we gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan X GPU used for this research.

References

1. Araque, O., Corcuera-Platas, I., Sanchez-Rada, J.F., Iglesias, C.A.: Enhancing
deep learning sentiment analysis with ensemble techniques in social applications.
Expert Systems with Applications 77, 236–246 (2017)

2. Atzeni, M., Reforgiato, D.: Deep learning and sentiment analysis for human-robot
interaction. In: Europ. Semantic Web Conference. pp. 14–18. Springer (2018)

3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Transactions of the Association for Computational Linguis-
tics 5, 135–146 (2017), https://transacl.org/ojs/index.php/tacl/article/view/999

4. Boratto, L., Carta, S., Fenu, G., Saia, R.: Using neural word embeddings to model
user behavior and detect user segments. Knowledge-Based Systems 108, 5–14
(2016). https://doi.org/10.1016/j.knosys.2016.05.002, cited By 10

5. Breiman, L.: Random forests. Machine Learning 45(1), 5–
32 (Oct 2001). https://doi.org/10.1023/A:1010933404324,
https://doi.org/10.1023/A:1010933404324

6. Buscaldi, D., Gangemi, A., Reforgiato Recupero, D.: Semantic Web Challenges:
Fifth SemWebEval Challenge at ESWC 2018, Heraklion, Crete, Greece, June 3
- June 7, 2018, Revised Selected Papers. Springer Publishing Company, Incorpo-
rated, 3st edn. (2018)

Deep Learning Adaptation with Word Embeddings 25

7. Cela, K.L., Sicilia, M.Á., Sánchez, S.: Social network analysis in e-learning envi-
ronments. Educational Psychology Review 27(1), 219–246 (2015)

8. Chauhan, G.S., Agrawal, P., Meena, Y.K.: Aspect-based sentiment analysis of stu-
dents feedback to improve teaching–learning process. In: Information and Commu-
nication Technology for Intelligent Systems, pp. 259–266. Springer (2019)

9. Clarizia, F., Colace, F., De Santo, M., Lombardi, M., Pascale, F., Pietrosanto,
A.: E-learning and sentiment analysis: a case study. In: Proceedings of the 6th
International Conference on Information and Education Technology. pp. 111–118.
ACM (2018)

10. Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep
learning. APSIPA Transactions on Signal and Information Processing 3 (2014)

11. Dessi, D., Dragoni, M., Fenu, G., Marras, M., Reforgiato Recupero, D.: Evaluating
neural word embeddings created from online course reviews for sentiment analysis.
In: The 34th ACM/SIGAPP Symposium on Applied Computing. pp. 2124–2127.
SAC (2019)

12. Dess̀ı, D., Fenu, G., Marras, M., Reforgiato Recupero, D.: Bridging learning ana-
lytics and cognitive computing for big data classification in micro-learning video
collections. Computers in Human Behavior (2018)

13. Dess̀ı, D., Fenu, G., Marras, M., Reforgiato Recupero, D.: Coco: Semantic-enriched
collection of online courses at scale with experimental use cases. In: Trends and
Advances in Infor. Systems and Technologies. pp. 1386–1396. Springer (2018)

14. Dess̀ı, D., Fenu, G., Marras, M., Recupero, D.R.: Leveraging cognitive comput-
ing for multi-class classification of e-learning videos. In: European Semantic Web
Conference. pp. 21–25. Springer (2017)

15. Dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment anal-
ysis of short texts. In: Proceedings of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Technical Papers. pp. 69–78 (2014)

16. Dragoni, M., Reforgiato Recupero, D.: Challenge on fine-grained sentiment analysis
within eswc2016. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) Semantic
Web Challenges. pp. 79–94. Springer International Publishing, Cham (2016)

17. Dragoni, G., P.M.: A neural word embeddings approach for multi-domain sentiment
analysis. IEEE Trans. Affect. Comput. 8(4), 457–470 (2017)

18. Dridi, A., Reforgiato, D.: Leveraging semantics for sentiment polarity detection in
social media. Int. Jour. of Machine Learning and Cybernetics (2017)

19. Esparza, G., de Luna, A., Zezzatti, A.O., Hernandez, A., Ponce, J., Álvarez, M.,
Cossio, E., de Jesus Nava, J.: A sentiment analysis model to analyze students
reviews of teacher performance using support vector machines. In: Int. Symp. on
Distributed Computing and Artificial Intelligence. pp. 157–164. Springer (2017)

20. Giatsoglou, M., Vozalis, M.G., Diamantaras, K., Vakali, A., Sarigiannidis, G.,
Chatzisavvas, K.: Sentiment analysis leveraging emotions and word embeddings.
Expert Systems with Applications 69, 214–224 (2017)

21. Ji, S., Satish, N., Li, S., Dubey, P.: Parallelizing word2vec in multi-core and many-
core architectures. arXiv preprint arXiv:1611.06172 (2016)

22. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fasttext.
zip: Compressing text classification models. arXiv:1612.03651 (2016)

23. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning. pp. 1188–1196 (2014)

24. Li, Y., Pan, Q., Yang, T., Wang, S., Tang, J., Cambria, E.: Learning word repre-
sentations for sentiment analysis. Cogn. Computation 9(6), 843–851 (2017)

25. Li, Y., Pan, Q., Yang, T., Wang, S., Tang, J., Cambria, E.: Learning word repre-
sentations for sentiment analysis. Cognitive Computation 9(6), 843–851 (2017)

26 Desśı et al.

26. Lin, C.C., Ammar, W., Dyer, C., Levin, L.: Unsupervised pos induction with word
embeddings. arXiv preprint arXiv:1503.06760 (2015)

27. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word
vectors for sentiment analysis. In: Proc. of the Annual Meeting of the Assoc. for
Computational Linguistics: Human Language Technologies - Vol. 1. pp. 142–150
(2011)

28. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

29. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

30. Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. CoRR abs/cs/0506075 (2005),
http://arxiv.org/abs/cs/0506075

31. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

32. Poria, S., Cambria, E., Gelbukh, A.: Deep convolutional neural network textual fea-
tures and multiple kernel learning for utterance-level multimodal sentiment anal-
ysis. In: Proceedings of the 2015 conference on empirical methods in natural lan-
guage processing. pp. 2539–2544 (2015)

33. Reforgiato Recupero, D., Cambria, E.: Eswc’14 challenge on concept-level senti-
ment analysis. In: Presutti, V., Stankovic, M., Cambria, E., Cantador, I., Di Iorio,
A., Di Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A. (eds.) Seman-
tic Web Evaluation Challenge. pp. 3–20. Springer International Publishing, Cham
(2014)

34. Reforgiato Recupero, D., Cambria, E., Di Rosa, E.: Semantic sentiment analysis
challenge eswc2017. In: Semantic Web Challenges. pp. 109–123. Springer (2017)

35. Reforgiato Recupero, D., Dragoni, M., Presutti, V.: Eswc 15 challenge on concept-
level sentiment analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann,
A. (eds.) Semantic Web Evaluation Challenges. pp. 211–222. Springer International
Publishing, Cham (2015)

36. Rodrigues, M.W., Zárate, L.E., Isotani, S.: Educational data mining: a review of
evaluation process in the e-learning. Telematics and Informatics (2018)

37. Rodriguez, P., Ortigosa, A., Carro, R.M.: Extracting emotions from texts in e-
learning environments. In: 2012 Sixth International Conference on Complex, Intel-
ligent, and Software Intensive Systems. pp. 887–892. IEEE (2012)

38. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016)

39. Rudkowsky, E., Haselmayer, M., Wastian, M., Jenny, M., Emrich, S., Sedlmair,
M.: More than bags of words: Sentiment analysis with word embeddings. Commu-
nication Methods and Measures 12(2-3), 140–157 (2018)

40. Saif, H., He, Y., Fernandez, M., Alani, H.: Semantic patterns for sentiment anal-
ysis of twitter. In: International Semantic Web Conference. pp. 324–340. Springer
(2014)

41. Socher, R., Pennington, J., Huang, E.H., Ng, A.Y., Manning, C.D.: Semi-
supervised recursive autoencoders for predicting sentiment distributions. In: Pro-
ceedings of the conference on empirical methods in natural language processing.
pp. 151–161. Association for Computational Linguistics (2011)

42. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Information Processing & Management 45(4), 427–437 (2009)

Deep Learning Adaptation with Word Embeddings 27

43. Tang, D., Wei, F., Qin, B., Yang, N., Liu, T., Zhou, M.: Sentiment embeddings
with applications to sentiment analysis. IEEE Transactions on Knowledge and
Data Engineering 28(2), 496–509 (2016)

44. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-
specific word embedding for twitter sentiment classification. In: Proc. of the Annual
Meeting of the Association for Computational Linguistics. pp. 1555–1565 (2014)

45. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network
for sentiment classification. In: Proceedings of the 2015 conference on empirical
methods in natural language processing. pp. 1422–1432 (2015)

46. Tripathy, A., Agrawal, A., Rath, S.K.: Classification of sentiment reviews using n-
gram machine learning approach. Expert Systems with Applications 57, 117–126
(2016)

47. Turney, P.D., Pantel, P.: From frequency to meaning: Vector space models of se-
mantics. Journal of artificial intelligence research 37, 141–188 (2010)

48. Vu, T., Nguyen, D.Q., Vu, X., Nguyen, D.Q., Catt, M., Trenell, M.: NIHRIO at
semeval-2018 task 3: A simple and accurate neural network model for irony detec-
tion in twitter. CoRR abs/1804.00520 (2018), http://arxiv.org/abs/1804.00520

49. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: A survey. Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8(4), e1253
(2018)

50. Zhang, Z., Lan, M.: Learning sentiment-inherent word embedding for word-level
and sentence-level sentiment analysis. In: 2015 International Conference on Asian
Language Processing (IALP). pp. 94–97 (Oct 2015)

