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1. Introduction

ABSTRACT

When ontological knowledge is acquired automatically, quality control is essential. Which part of the
automatically acquired knowledge is appropriate for an application often depends on the context in
which the knowledge base or ontology is used. In order to determine relevant and irrelevant or even
wrong knowledge, we support the tightest possible quality assurance approach - an exhaustive manual
inspection of the acquired data. By using automated reasoning, this process can be partially automatized:
after each expert decision, axioms that are entailed by the already confirmed statements are automati-
cally approved, whereas axioms that would lead to an inconsistency are declined.

Starting from this consideration, this paper provides theoretical foundations, heuristics, optimization
strategies and comprehensive experimental results for our approach to efficient reasoning-supported
interactive ontology revision.

We introduce and elaborate on the notions of revision states and revision closure as formal foundations
of our method. Additionally, we propose a notion of axiom impact which is used to determine a beneficial
order of axiom evaluation in order to further increase the effectiveness of ontology revision. The initial
notion of impact is then further refined to take different validity ratios — the proportion of valid state-
ments within a dataset — into account. Since the validity ratio is generally not known a priori - we show
how one can work with an estimate that is continuously improved over the course of the inspection pro-
cess.

Finally, we develop the notion of decision spaces, which are structures for calculating and updating the
revision closure and axiom impact. We optimize the computation performance further by employing par-
titioning techniques and provide an implementation supporting these optimizations as well as featuring
a user front-end. Our evaluation shows that our ranking functions almost achieve the maximum possible
automatization and that the computation time needed for each reasoning-based, automatic decision
takes less than one second on average for our test dataset of over 25000 statements.

© 2011 Elsevier B.V. All rights reserved.

In order to ensure a very high quality, the DBpedia background
ontology has been created manually. For many applications, how-

Many real-world applications in the Semantic Web make use of
ontologies, also called knowledge bases, in order to enrich the
semantics of the data on which the application is based. As a pop-
ular example, consider DBpedia, which consists of structured infor-
mation extracted from Wikipedia. DBpedia uses a background
ontology defining the meaning of and relationships between terms.
For example, if two terms are related via the property river, the first
one can be inferred to be an instance of the class Place and the lat-
ter one of the class River.
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ever, the time costs of a completely manual knowledge acquisition
process are too high. Thus, the additional application of (semi-)
automatic knowledge acquisition methods such as ontology
learning or matching techniques is often considered a reasonable
way to reduce the expenses of ontology development. The results
produced by such automatic methods usually need to be manually
inspected either partially, in order to estimate the overall quality of
the resulting data, or to the full extent, in order to keep the quality
of the developed ontology under control. Even when we aim at tak-
ing an ontology that has been developed in another area or as part
of another application, it might not be appropriate to simply use
the ontology as it is since statements that hold in the context of
one application not necessarily hold in a different context.

So far, knowledge representation (KR) research has been focus-
ing on restoring the consistency of knowledge bases enriched with
new axioms as done in various belief revision and repair
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approaches, see, e.g., [3-7]. Thereby, new axioms not causing an
inconsistency are accepted as valid facts not requiring further
inspection. We aim at a more restrictive quality control process
in which a domain expert inspects a set of candidate axioms and
decides for each of them whether it is a desired logical conse-
quence. We call this exhaustive manual inspection of the acquired
data ontology revision. If we assume that the deductive closure of
the confirmed statements must be disjoint from the set of declined
statements, then this process can be partially automatized: based
on the decisions taken by the expert, we can automatically discard
or include yet unevaluated axioms depending on their logical rela-
tionships with the already evaluated axioms. On the one hand, we
can automatically approve axioms that are entailed by the already
confirmed statements, since declining them would violate our
assumption. On the other hand, we can automatically decline
axioms that would cause any of the declined axioms to become a
consequence of the confirmed ones, since accepting them would
again violate our assumption.

Throughout the paper, we use the following running example
written in OWL'’s functional-style syntax [8]. We use an imaginary
prefix ex to abbreviate IRIs:

Example 1. Consider the ontology in Table 1. Let us assume that
we have already confirmed that the axioms in the upper part,
which state subclass relations between classes, belong to the
desired consequences.

We further assume that Axioms (1)-(8) in the lower part, which
define several different types for the individual ex:nanotubel, are
still to be evaluated.

If Axiom (8) is declined, we can immediately also decline
Axioms (1)-(6) assuming OWL or RDFS reasoning since accepting
the axioms would implicitly lead to the undesired consequence (8).
Note that no automatic decision is possible for Axiom (7) since it is
not a consequence of Axiom (8) and the already approved
subsumption axioms. Similarly, if Axiom (1) is approved, Axioms
(2)-(8) are implicit consequences, which can be approved auto-
matically. If we start, however, with declining Axiom (1), no
automatic evaluation can be performed.

In the previous example, we only made decisions about class
assertion axioms since we assumed that all subclass axioms were
already approved or part of an already established ontology. This
is, however, not a restriction of the approach. The following exam-
ple shows that we can also make decisions about terminological
axioms in the process of revising an ontology. We characterize
the formalisms and kinds of axioms to which our approach can
be applied more precisely in the following section. We use imagi-
nary prefixes a and b to abbreviate IRIs in this example:

Table 1
An example ontology from the nano technology domain.

SubClassOf{ex:AluminiumNitrideNanotube ex:AluminiumNitride)
SubClassOf(ex:AluminiumNitride ex:NonOxideCeramics)
SubClassOf(ex:NonOxideCeramics ex:Ceramics)
SubClassOf{ex:Ceramics ex:MaterialByMaterialClass)
SubClassOf{ex:MaterialByMaterialClass ex:Material)
SubClassOf(ex:Material ex:PortionOfMaterial)
SubClassOf(ex:Material ex:TangibleObject)

ClassAssertion(ex:AluminiumNitrideNanotube ex:nanotubel) (1)
ClassAssertion(ex:AluminiumNitride ex:nanotubel) (2)
ClassAssertion(ex:NonOxideCeramics ex:nanotubel) (3)
ClassAssertion(ex:Ceramics ex:nanotubel) (4)
ClassAssertion(ex:MaterialByMaterialClass ex:nanotubel) (5)
ClassAssertion(ex:Material ex:nanotubel) (6)
ClassAssertion(ex:PortionOfMaterial ex:nanotubel) (7)
ClassAssertion(ex: TangibleObject ex:nanotubel) (8)

Example 2. Let us assume that we have already approved the
axioms in the upper part of Table 2, which state subclass relations
between classes. We further assume that Axioms (9)-(11) in the
lower part of Table 2 are still to be evaluated. If Axiom (9) is
approved, we can immediately also approve Axiom (10) since it
is already a consequence of the approved axioms: a:Employee is
interpreted as a subset of the extension of a:Person and b:Lecture
is interpreted as a subset of the extension of b:Event, but if
a:Person and b:Event are disjoint due the just approved Axiom (9)
then so are a:Employee and b:Lecture. Moreover, we can decline
Axiom (11), since approving this axiom would implicitly lead to
incoherency, again since a:Ordinary and b:Ordinary have to be
interpreted as subsets of disjoint sets and can, therefore, not be
equivalent.

From the above examples, it can be observed that

¢ a high grade of automation requires a good evaluation order and
e approval and decline of an axiom has a different impact.

Which axioms have the highest impact on decline or approval
and which axioms can be automatically evaluated once a particular
decision has been made can be determined with the help of algo-
rithms for automated reasoning, e.g., for RDFS or OWL reasoning.
One of the difficulties is, however, that it is not known in advance,
which of the two decisions the domain expert takes. We show that,
in some cases, a realistic prediction about the decision of the user
can be made: if the quality is fairly high, the user is likely to
approve an axiom. Hence, axioms that have a high impact on ap-
proval (approval impact) should be evaluated with higher priority.
For low quality data, the situation is reversed, i.e., axioms that have
a high impact on decline (decline impact) should be considered
first. We measure the quality by means of the validity ratio, i.e.,
the proportion of (manually and automatically) accepted axioms,
and show that, depending on the validity ratio of a dataset, differ-
ent impact measures used for axiom ranking are beneficial. While
approval and decline impact measures yield fairly good results for
validity ratios close to 100% or 0%, the optimality of results is left to
chance in case of validity ratios close to 50%. To close this gap, we
introduce an advanced ranking function based on these simple im-
pact measures but parametrized by an estimated validity ratio. In
our evaluation, we show that the revision based on the novel rank-
ing function almost achieves the maximum possible automation. In
particular the parametrized ranking functions achieve very good
results for arbitrary validity ratios.

Further, since the expected validity ratio is usually not known in
advance, we suggest a ranking function where the validity ratio is
learned on-the-fly during the revision. We show that, even for
small datasets (50-100 axioms), it is worthwhile to rank axioms
based on this learned validity ratio instead of evaluating them in
a random order. Furthermore, we show that, in case of larger data-
sets (e.g., 5000 axioms and more) with an unknown validity ratio,
learning the validity ratio is particularly effective (with only 0.3%
loss of effectiveness) due to the law of large numbers, thereby
making the assumption of a known or expected validity ratio
unnecessary. For such datasets, our experiments show that the
proportion of automatically evaluated axioms when learning the

Table 2
An example ontology from the enterprise domain.

SubClassOfia:Ordinary a:Employee)
SubClassOf(a:Employee a:Person)
SubClassOf(b:Ordinary b:Lecture)
SubClassOfib:Lecture b:Event)

DisjointClasses(a:Person b:Event) 9)
DisjointClasses(a:Employee b:Lecture) (10)
EquivalentClasses(a:Ordinary b:Ordinary) (11)
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validity ratio is nearly the same (difference of 0.3%) as in case
where the validity ratio is known in advance.

Even for light-weight knowledge representation formalisms,
reasoning is often expensive and in an interactive setting it is
crucial to minimize the number of reasoning tasks while still max-
imizing the number of automated decisions. Inspired by the tech-
niques used to optimize ontology classification [9], we reduce the
number of reasoning tasks by introducing the notion of decision
spaces - auxiliary data structures that allow for storing the results
of reasoning and reading-off the impact that an axiom will have
upon approval or decline. Decision spaces exploit the characteris-
tics of the logical entailment relation between axioms to maximize
the amount of information gained by reasoning, and, therefore, in
particular in case of logics for which entailment checking is not
tractable, decision spaces reduce the computational effort. In addi-
tion to the performance gain achieved by using decision spaces, we
show that partitioning - dividing the datasets under revision into
logically independent subsets - further decreases the number of
required reasoning calls.

We implemented the proposed techniques in the tool revision
helper, which even for expressive OWL reasoning and our dataset
of 25,000 axioms requires on average only 0.84 s (7.4 reasoning
calls) per expert decision, where the automatic evaluation signifi-
cantly reduces the number of expert decisions.

From our evaluation, it can be observed that, on the one hand, a
considerable proportion (up to 80%) of axioms can be evaluated
automatically by our revision support, and, on the other hand, an
application of decision spaces and partitioning significantly reduces
the number of required reasoning operations, resulting in a consid-
erable performance gain - 83% of reasoning calls could be avoided.

The paper is organized as follows: In Section 2, we formalize the
basic notions of reasoning-supported ontology revision. In Section 3,
we define decision spaces and show how they can be updated dur-
ing the revision. Section 4 describes the proposed parameterized
ranking function. Section 5 introduces the partitioning optimization
and we evaluate the approach in Section 6. We then present the user
front-end revision helper in Section 7 and discuss existing related
approaches in Section 8 before we conclude in Section 9.

The paper combines and extends previous work [1,2] with full
proofs.

2. Revision of ontologies

The approach proposed here is not specific to a particular KR for-
malism. The only requirement for the chosen formalism is that it is
logic-based, there is a procedure for deciding whether an ontology
entails an axiom, and that taking all consequences is a closure oper-
ation. The latter means that, for O, O ontologies, the underlying
entailment relation, denoted =, has the following properties®:

1. it is extensive, i.e., any statement logically follows from itself:
{0} Fo,

2. it is monotone, i.e., adding further statements does not invali-
date previous consequences: O = o implies OU @' o, and

3. it is idempotent, i.e., extending an ontology with an entailed
axiom does not yield new consequences: OF o and

Ou{a}  pimply O | 5.

Most commonly used ontology languages for the Semantic Web
such as RDFS or OWL fulfill these requirements. For OWL ontologies
we are, however, restricted to the Description Logic based OWL Di-
rect Semantics [ 10] since we require the existence of a decision pro-
cedure for logical entailment. The OWL 2 RL profile [11] allows for

2 Throughout this paper, we assume that an ontology is a set of axioms, and will
use o, B, and y to denote axioms.

decidable reasoning under OWL'’s RDF-Based Semantics, but it is de-
fined in terms of rules that materialize only certain inferences,
namely assertions about individuals in the ontology such as class
memberships or property relations between individuals. Other en-
tailed consequences are not necessarily derived by the OWL 2 RL
rules. Thus, completeness can only be guaranteed when the entail-
ment checks are only for assertions about individuals in the ontology
and our approach is only applicable for revising assertions, whereas,
in general, any kind of axiom can be used in the revision.

The revision of an ontology O aims at a separation of its axioms
(i.e., logical statements) into two disjoint sets: the set of wanted
consequences OF and the set of unwanted consequences O This
motivates the following definitions.

Definition 1 (Revision State). A revision state is defined as a tuple
(0,07, 0") of ontologies with OF C “ o co, and (9F no =g.
Given two revision states (O, or, 03) and (O, 0,05, ,05), we call
(0,05, 02) a refinement of (O, O (9);) if (9F c (95 and O’: COyA
revision state is complete, if O = (’)k U O and incomplete other-
wise. An incomplete revision state (O, OF 0) can, be refined by
evaluating a further axiom o€ (9\ (OFu o ), obtaining
(0,0F u{a}, o ) or (O, 0F, o' u {o}). We call the resulting revi-
sion state an elementary refinement of (O, OF, o ).

We introduce the notion of consistency of revision states to
express the condition that the deductive closure of the wanted con-
sequences in OF must not contain unwanted consequences. If we
want to maintain consistency, a single evaluation decision can pre-
determine the decision for several yet unevaluated axioms. These
implicit consequences of a refinement are captured in the revision
closure.

Definition 2 (Revision State Consistency & Closure). A (complete or
incomplete) revision state (O, OF,© ) is consistent if there is no
aeO such that OF |: o. The revision closure clos(O, OF O#) of
. o0 s (o, OC,OC) with OF :=={xc O|OF o} and
o. .-{oce(’)|(’)#u{oc} |:[3forsome[)’e(9 I3

Note that, in order to be able to maintain the consistency of a
revision state, df must contain all axioms that, in case of an accept,
would lead to an entailment of any unwanted consequences. We
can show the following useful properties of the closure of consis-
tent revision states:

Ve . . .
Lemma 1. For (O, 0", © ) a consistent revision state,

1. clos(0, OF, 0" is consistent,

2. every elementary refinement of clos(O, OF, O#) is consistent,

3. every consistent and complete refinement of (O, OF,O#) is a
refinement of clos(0, OF, 0).

Proof. The first claim is immediate by the definition of consistency
and closures of revisions. For the second claim, (0,0, (9#) is con-
sistent by assumption and clos(@ OF o ) is then consistent (by
the first claim). Since clos(©, OF Nea ) is a closure of (O, OF, o ),
we have clos(O, oF.0) = (O,{oc € O|OF o}, {a e O|OFU{n}
p for some pe o }). Since an elementary revision of clos(
OF,0") has to be for an axiom o€ O\ ({BlOF E YU {BlO U
B E v for some y o 1), we immediately get that the elementary
refinement is consistent. For the last claim, if clos(0O, OF, O#) is
already complete the claim trivially holds. Otherwise, since
(0,0F, o ) is consistent, we cannot make elementary refinements
that add an axiom o € {f|OF E f} to O since this would result in
an inconsistent refinement, neither can we add an axiom
o e {/i\dé U B E y for some y € dé} to (9F Thus, a complete and
consistent refinement of (0O,0OF Nea ) is a refinement of
clos(0,0F, 0. O
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Algorithm 1 employs the above properties to implement a gen-
eral methodology for interactive ontology revision.

Algorithm 1. Interactive Ontology Revision

Input: (0, O}, (’)i) a consistent revision state
Output: (O, OF, (’)#) a complet; and consistent revision state
1: (0,07, 0 — clos(0, Of , 0,)
2: while 0 U0 # 0 do
3: choose e O\ (OFUO)
if expert confirms o then
iz Iz

(0,07,0) — clos(0,0F U {a}, 0 )
else

(0,07,07) — clos(0, 07,0 U {a})
end if

4
5
6:
7
8
9: end while

Instead of starting with empty @5 and Oz, we can initialize
these sets with approved and declined axioms from a previous
revision or add axioms of the gntology that is being developed to
Of. We can further initialize O, with axioms expressing inconsis-
tency and unsatisfiability of predicates (i.e. of classes or relations)
in O, which we assume to be unwanted.

In line 3, an axiom is chosen that is evaluated next. As men-
tioned earlier, choosing randomly can have a detrimental effect
on the number of manual decisions needed. Ideally, we want to
rank the axioms and choose one that allows for a high number of
consequential automatic decisions. The notion of axiom impact re-
fers to the number of axioms that can be automatically evaluated
upon approval or decline of an axiom. Note that after an approval,
the closure might extend both O~ and O, whereas after a decline
only @ can be extended. We further define 2(0, OF,O#) as the
number of yet unevaluated axioms and write |S| to denote the car-
dinality of a set S:

Definition 3 (Impact). Let (O, (’)H(’)ﬁ) be a consistegt revision
state with o€ O and let 2(0,0F, 0 ) := |0\ (OFU O )|. For an
axiom o, we define its approval impact, impact®(a), its decline
impact, impact™ (o), and its guaranteed impact, guaranteed(o.) :
impact* (o) = 2(0, 07, 0)

—2(clos(0, OF U {a},0")),
impact™(a) = 2(0,0F, @)

—2(clos(0, 07, 0 U {a})),
guaranteed (o)) = min(impact™ (or), impact™ (a)).

Table 3
Example axiom dependency graph and the corresponding ranking values.

121

We further separate impact™ (o) into the number of automatic
approvals, impact™(c), and the number of automatic declines,
impact™ (o)

impact™(or) = |{$ € 0|0 U{a} E B},
impact*d(a) =|{pe 00" U{a,p} Ey, forsome7ye O#}\.

Note that impact" (¢) = impact™ (o) + impact*®(cr). Ranking axi-
oms by impact™ privileges axioms for which the number of auto-
matically evaluated axioms in case of an accept is high. Going
back to our running example, Axiom (1), which yields 7 automat-
ically accepted axioms in case it is approved, will be ranked high-
est. The situation is the opposite for impact™, which privileges
axioms for which the number of automatically evaluated axioms
in case of a decline is high (Axioms (7) and (8)). Ranking by guar-
anteed privileges axioms with the highest guaranteed impact, i.e.,
axioms with the highest number of automatically evaluated axi-
oms in the worst-case (Axioms (4) and (5)).

Table 3 lists the values for all ranking functions for the axioms
from Example 1.

Since computing such an impact as well as computing the clo-
sure after each evaluation (lines 1, 5, and 7) can be considered very
expensive, we next introduce decision spaces, auxiliary data struc-
tures which significantly reduce the cost of computing the closure
upon elementary revisions and provide an elegant way of deter-
mining high impact axioms.

3. Decision spaces

Intuitively, the purpose of decision spaces is to keep track of the
dependencies between the axioms in such a way, that we can
read-off the consequences of revision state refinements upon an
approval or a decline of an axiom, thereby reducing the required
reasoning operations. Furthermore, we will show how we can
update these structures after a refinement step avoiding many
costly recomputations.

Deﬁnitign 4 (Decision Space). Given a revision state (O, (’)ﬁ(’)#)
with O # (), the according decision space D or o) = (O E,C)
contains the set

0= 0\ ({207 Fa} U{|O" U{a} B, pe O}

of unevaluated axioms and two binary relations, E (entails) and C
(conflicts) defined by

oEB iff O U {a} = p and

aCp iff OF U {o, B} k=7 for some y € O

The requirement that o # 0 is without loss of generality since
we can always add an axiom that expresses an inconsistency,

0

0

impact™ — Axiom impact™® impact™?® impact™ guaranteed
(1) 7 0
(2) 6 0
3) 5 0
guaranteed—s 4) 4 0
guaranteed— ©) S v
(6) 2 0
(7) 0 0
(8) 0 0

(®)

impact™ —

AN L AW =

O O N W W N =
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which is clearly undesired. On the other hand, the non-emptiness
condition ensures that two axioms which together lead to an
inconsistency are indeed recognized as conflicting. For example,
consider the following two axioms:

Samelndividual(ex : a ex : b) (12)
Differentindividuals(ex : a ex : b) (13)

We assume that Axiom (12) has just been approved and belongs,
therefore, to O, whereas Axiom (13) is a not yet evaluated axiom.
Clearly, Axiom (12)and (13)cannot be true at the same time and, con-
sequently, the inconsistent ontology O~U {(13)} entails any axiom,
but, unless we have some axiom g in @, this will not be recognized.

As a direct consequence of this definition, we have D o o) =
Deos(o.0r0)- The following properties follow immediately from
the above definition:

Lemma 2. For any decision space Do or o) = (O',E, C), the follow-
ing hold:

P1 (O',E) is a quasi-order (i.e., reflexive and transitive),
P2 Cis symmetric,

P3 oEpB and pCy imply aCy for all o, B, y € O', and

P4 if oEp then oCB does not hold.

Proof. For P1, due to the required properties of the underlying logic
we have {«} |= « (extensivity) and O" U {a} = o (monotonicity) and
it follows that E is reflexive. Given OF U {a} = g and O- U {8} E },
idempotency ensures OF U {a} 7, hence E is transitive. For P2,
symmetry of C is an immediate consequence from its definition.
For showing P3, suppose O~ U {a} k fand OF U {,7} | 6 for some
s € ©. Monotonicity allows to get OF U {a,y} = p from the former
and OF U {a, §,y} E 6 from the latter, whence OF U {a, $,7} k= ¢ fol-
lows via idempotency. To see that E and C are mutually exclusive
(P4), assume the contrary, i.e., OF U {«} = gand O" U {a, §} | y for
some y € o hold simultaneously. Yet, idempotency allows to con-
clude OF U {a} |= 5. However then o cannot be contained in O’ by
definition, which gives a contradiction and proves the claim. O

In fact, the properties established in Lemma 2 are characteristic.
This means that no other than the above established properties
hold for decision spaces. We show this by proving that any struc-
ture satisfying these properties can be seen as the decision space
for an appropriate revision state:

Lemma 3. Let V be finite set and let E, CCV x V be relations for
which (V,E) is a quasi-order, C=C~, EcCCC and ENC = (. Then
there is a decision space Do o~ oy isomorphic to (V,E,C).

Proof. As a very basic formalism, we choose propositional logic as
KR language. Let O contain one atomic proposition p, for every
ve vV, let O ={p,— py|VEV'} U{-p, V -p,[vCV'} and let
O = {false}. First observe that O’ = O. Next, we claim that the
function f:V — O with o—p, is an isomorphism between
(V,E,C) and ?D(po- o). Clearly, f is a bijection. Moreover, vEv/
implies p,Ep, by modus ponens since p, — p, € O". Likewise,
vCv' implies p,Cp, due to —p,V —p, € OF. The two other direc-
tions are shown indirectly.

To show that p,Ep,, implies #Ev’ assume there are p,,, p,, with
p,Ep,, but vEv' does not hold. Now, consider the propositional
interpretation mapping p; to true whenever » €7 v and to false
otherwise. It can be verified that this interpretation is a model of
OF and satisfies p, as well as —p,, hence OFu{p,} ¥ p, and
consequently p,Ep,, cannot hold, so we have a contradiction.

3 As usual, we let R~ = {(y,%)|(x,y) € R} as well as RoS = {(x,2)|(x,y) €R,(¥,2)
€ S for some y}.

To show that p,Cp,, implies vC¢’ assume there are p,,, p,, with
p,Cp,, but vCv' does not hold. Now, consider the propositional
interpretation mapping p; to true whenever » € 7 vU 1 ¢/ and to
false otherwise. It can be verified that this interpretation is a model
of OF and satisfies p, as well as p,,, hence OF U {p,,,p, } ¥ false and
consequently p,Cp, cannot hold, so we have a contradiction. O

The following lemma shows how decision spaces can be used for
calculating closures of updated revision states and impacts of
axioms. As usual for (quasi)orders, we define fo = {f|aES} and
loe = {B|BEa}. Moreover, we let 1t = {B|oCf}.

Lemma #4. Given Dor o) = O'E,C) for a#revision #state
(0,07,0) such that (0,0, 0 ) =clos(0,0,0 ) with © #0
and o € O°, then

1. clos(0, 0" U {a},0) = (0,0 U 10, O L),
2. clos(0,0F, & U {a}) = (0,0°, 0U |a),

3. impact* (o) = | To| + | 10¢), and

4. impact™ (o) = | | o.

Proof

1. By definition of closures, we have that clos(O, 0" U {a}, (’)#) is
(0,05, 0%) for O = {p€ 0[0" U {a} k) and O = {p e 0lOF
W, Bt Ey,7€0 }

By definition of the entails and conflicts relation we obtain
OF = OFU{pe O'|aEB} and O, = O U { € O'|aCp}.

By definition of fa and 1 follows O =O"Ufa and
O = o v

Thus we obtain clos(0, 0F U {o}, @) = (0, OFU 10,0 U ) as
claimed.

2. Since (0, 0", (9#) is already closed, clos(©,OF, ou {a}) is
(0,07, O,  with O ={pe 00" U{p} &7 for some y €
(O U {a})}. Due to the prior closedness, o is the only possibly
y that will yield some g, hence ;=0 U{pe OO
{8} E o}. By definition of the conflicts relation, this implies
O = O U{p e O'|aCp}), whence by definition of | follows
O, = OU | ). Therefore clos(0,0F, 0" U{a}) = (0,0F,0°U ).

3. By Definition 3, impact®(ax)=?(0, 0%, 0") - 2(clos(O, OFU
{a}, O#)). By Definition 2, ?(clos(O, OF U {a}, O#)) equals

AOABe 00" U{ay EB),  {BeOlO" U} 7.7 e .

By the definition of ?(-) (Definition 3), impact” (&) = |O\ (OF U O#)\—
ZlO\ (05 U O] where O, = {p€ 00" U{o} £} and O, =
{B€ 00" U{a,p} Ey,7€0 L

By definition of the entails and conflicts relations the line above
equals

O\ (0" U{B e O'aERY U O U{B € OjaCh))]

which, by definition of 1 and 1, is |0\ (OFU TocU @ Uw)|. Overall

we then have impact® () = 0] — (|OF| + |10 )= (|0] - (|07 |+

| Tol + |0 |+ ), which is | Taf + | .

4. By Definition 3, impact («) = 2(0, 0", 0") — 2(clos(0, OF, O U
{a})). By Definition 2, the latter is ?(0,0F, 0" U{f € 0|07 U
{B} E a}). Using Definition 3, impact™ (o) then is:

0\ (0" U D)~ 0\ (OFUO U{Be0l0"U{p} F )

By definition of the entails relation the latter is |O\ (OF vou

(B € O'|BEa})|, which, by definition of |, is |0\ (O UO U | &)|.

Thus impact (@) = 0] ~ (O] + |0]) — (10 — (10F] + O] + |

la))=|lal. O
Hence, the computation of the revision closure (lines 5 and 7)

and axiom impacts does not require any entailment checks if the

according decision space is available. For the computation of deci-
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sion spaces, we exploit the structural properties established in
Lemmas 2 and 3 in order to reduce the number of required entail-
ment checks in cases where the relations E and C are partially
known. For this purpose, we define the rules RO-R9 displayed in
Table 4, which describe the interplay between the relations E and
C and their complements E and C. The rules can serve as production
rules to derive new instances of these relations thereby minimizing
calls to costly reasoning procedures. By virtue of Lemma 3, we also
have the guarantee that no further rules of this kind can be created,
i.e., the rule set is complete for decision spaces.

An analysis of the dependencies between the rules RO-R9 re-
veals an acyclic structure (indicated by the order of the rules).
Therefore E, C, C, and E can be saturated one after another. More-
over, the exhaustive application of the rules RO-R9 can be con-
densed into the following operations:

E—E,
C—Eo(CUC)oE,
C—E o(CulduC)oE,
E«—E o(CoCUE)oE".

The correctness of the first operation (where (-)* denotes the
reflexive and transitive closure) is a direct consequence of RO
and R1. For the second operation, we exploit the relationships

R2 R3 R2 R3
EoCoE CCoE CC oE CC CC,
R2 R3 R2
EoC oE CEoC CEoCCC
that can be further composed into
EoCoE UEoC oE =Eo(CUC)oE CC.

Conversely, iterated backward chaining for C w.r.t. R2 and R3 yields
Eo (CuC)oE as a fixpoint, under the assumption E = E*. The cor-
rectness of the last two operations can be shown accordingly.
Algorithm 2 realizes the cost-saving identification of the com-
plete entailment and conflict relations of a decision space. Main-

taining sets of known entailments (E), non-entailments (E),
conflicts (C) and non-conflicts (C), the algorithm always closes
these sets under the above operations before it cautiously executes
expensive deduction checks to clarify missing cases. First, the ini-
tially known (non-)entailments and (non-)conflicts are closed in
the aforementioned way (lines 1-7). There and in the subsequent
lines, we split computations into several ones where appropriate
in order to minimize the size of sets subject to the join operation
(o). Lines 8-26 describe the successive clarification of the entail-
ment relation (for cases where neither entailment nor non-entail-
ment is known yet) via deduction checks. After each such
clarification step, the sets E, E, C, and C are closed. Thereby, we
exploit known properties of intermediate results such as already
being transitive or symmetric to avoid redoing the according
closure operations unnecessarily (transupdatediff computes,
for a relation R and a pair of elements (., f8), the difference between
the reflexive transitive closure of R extended with (o, §) and R, i.e.,
(Ru{(a, p)})" \ R")). Likewise, we also avoid redundant computa-

Table 4
Completion rules for partially known decision spaces.
RO — E(x,x) Reflexivity of E
R1 E(x,y) NE(y,2) — E(x,2) Transitivity of E
R2 E(x,y) AC(y,2) — C(x,2) (P3)
R3 C(x,y) — C(y,x) Symmetry of C
R4 E(x.y) - C(x.y) Disjointness of E and C
R5 Cx.y) - Ty.x) Symmetry of C
R6 E(x,y) AC(x,2) — Cly,2) (P3)
R7 C(x.y) - E(x,y) Disjointness of E and C
R8 C(x.y) A CY,2) - E(x.2) (P3)
R9 E(x,y) NE(x.2) - Ey.2) Transitivity of E

tions and reduce the size of the input sets for the join operations
by explicitly bookkeeping sets E', C’, C, and E' containing only
the instances newly added in the current step. Lines 27-38 proceed
in the analog way for stepwise clarification of the conflicts relation.

Algorithm 2. Decision Space Completion

Input: (0, OF, (’)#) a consistent revision state; E, E, C, C
subsets of the entailment and conflict relations and their
complements

Output: (O, E, C) the corresponding decision space

:E—FE"

:C—EoCoE

:C—CuC

:C—F oEUIdO) oFE

:C—CuC

:E— (CoC)UE

:E—E oEoE

: while EUE # 0" x ©' do

9: pick one (o, ) € O° x O'\ (EUE)

10: if OF U {a} = f then

11: E «— transupdatediff(E, (o, B))

12: E—EUFE

13: C— (EoQO)\C

14: C—Cu(CoE)\C

15: C—cCcucC

16: C— (E o)\ C

17: C—CU(CoE)\C

18: C—CuC

19: E—((CoC)u(CoCH))\E

20: E—EUF

21: E — ((E-oE)U(E oE))\E

22: E—EUEUFE oE )U(EoE")

0N Ul A WN =

23: else
24: E—EU(E o{(a,p)}oE)
25: end if

26: end while

27: while CUC = O x ©" do

28: pick one (o, f) € 0" x O\ (Cuf}t
29: if OFu{a,p} =7 forsomey e O then
30: C —Eo{(ap), (o)} o E”

31: C—cCcuC

32: E«—EU(E oCoCoE")

33: else

34: C — (E o{(a, ), (B,ct)} oE)\ C
35: C—CcuC

36: E—EU(E oCoCoE)

37: end if

38: end while

Since the complexity of entailment checking will almost always
outweigh the complexity of the other operations in Algorithm 2,
we first analyze the complexity of the algorithm under the
assumption that entailment checking is done by a constant time
oracle. We then show how entailment checking can be factored in.

Lemma 5. Let (O, OF,O#) be a revision state with O # () and
E, E, C, C (possibly empty) subsets of the entailment and conflicts
relations. We denote the size |O| of O with n. Given (O, OF, (’)#) and
E, E, C, C as input, Algorithm 2 runs in time bounded by O(n°) and
space bounded by O(n?) if we assume that entailment checking is a
constant time operation.
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Proof. We first note that O is bounded by n since
|0 = |0 — (JOF| + |&7|). Similarly, the size of each relation
E, E, C, and C is bounded by n? since the relations are binary rela-
tions over axioms in 0. We first analyze the individual operations.
Computing the transitive reflexive closure of a relation can be done
in cubic time, i.e., for E* with E a relation over at most n axioms, we
get a bound of n®. The computation of transupdatediff is in the
worst case the same as computing the reflexive transitive closure.
For a binary join operation (o), the output is again a binary relation
over O of size bounded by n?. Each binary join can be computed in
at most n? steps. Note that multiple joins can be seen as several bin-
ary joins since each intermediate for formalisms where entailment
checking is harder than PTime relation is again over axioms from
0 and is of size at most n2. The union operation (U) corresponds to
the addition of axioms. Each of the while loops is executed at most
n? times and requires a fixed number of join operations and possibly
in one case the computation of transupdatedi ff, which gives an
upper bound of O(n? - n®) = O(n®) for both while loops. Together
with the reflexive transitive closure and the fixed number of join
operations before the while loops, we have that the time complexity
of Algorithm 2 is O(n®) and its space complexity is O(n?) assuming
that entailment checking is a constant time operation. [J

Note that the approach is targeted towards logics where the
entailment checking problem is not tractable, i.e., harder than
PTime. Otherwise, the performance benefit is only due to avoiding
applying the same entailment checks multiple times.

Lemma 6. Let (O, OF, O#) be a revision state with @ # 0, |0]:=n
and the axioms in O expressed in a logic £ in which taking all
consequences is a closure operation and for which there is a decision
procedure for logical entailment of complexity c(n) where n is the size
of the input to the procedure. Let E, E, C, C be (possibly empty)
subsets of the according entailment and conflicts relations. Then there
is a polynomial p such that the runtime of Algorithm 2, given
(0,0F, (9#) and E, E, C, C as input, is bounded by p(n) - c(n).

Proof. The input to the entailment checking algorithm is in all
cases of size n. Both while loops perform at most n? entailment
checks, which together with the analysis from Lemma 5 give the
desired result. O

3.1. Updating decision spaces

We proceed by formally describing the change of the decision
space as a consequence of approving or declining one axiom with
the objective of again minimizing the required number of entail-
ment checks. We first consider the case that an expert approves
an axiom o € ©’, and hence o is added to the set O of wanted
consequences.

Lemma 7. Let D(o oF Oy) = (Ol?,E, C), o e 07, and D(OOZU{C{},OV) =
(O e E.C). Then ‘

* Opew = O\ (1 2 U0),
o BEy implies BE'y for B, y € O..,,, and

e BCy implies BC'y for B, 7 € Oheyy

Essentially, the lemma states that all axioms entailed by o (as wit-
nessed by E) as well as all axioms conflicting with « (indicated by C)
will be removed from the decision space if « is approved. Moreover
due to monotonicity, all positive information about entailments
and conflicts remains valid. Algorithm 3 runs in time bounded by

O(n®) and space bounded by O(n?) and takes advantage of these
correspondences when fully determining the updated decision
space.

Lemma 8. Let Do o- o) be a decision space, o€ O" an axiom. We
denote the size |O| of O with n. Given Do+ and o as input,
Algorithm 3 runs in time bounded by O(n°) and space bounded by O(n?)
if we assume that entailment checking is a constant time operation.

Proof. Lines 1-5 of Algorithm 3 can be executed in cubic time and
quadratic space using the same arguments as in Lemma 5. By
Lemma 5, executing lines 8-38 from Algorithm 2 under the
assumption that entailment checking is a constant time operation
can be done in time O(n>), which proves the claim.

Algorithm 3. Update of Decision Space D o~ &y 0N
Approving o

Input: Dy - o), 0 € O

Output: D oru(s,0°) Updated decision space
0T O\ (Touw)

(E—En(0" x 0

(C—CN(O"x 0O

:C—F oF

cE«—E 0oCoCoE™

: execute lines 8-38 from Algorithm 2

DU A W N =

Algorithm 4. Update of Decision Space D o+ ) on Declining
o

Input: Do - o), 0 € O

Output: D, or o () Updated decision space
1: 0" = O\ | a,

2:E—EN(0" x 0

3:E—En(0' x 0

4:C—CnN(O" x O

5:C—FE oF

6: while CUC=0" x ©" do

7:  pick one (,7) € ©" x O"\ (CuC)

8: if OFU{p,7} £ o then

90 C—=CUEABY)(1PB}oE)

10: else
11: EH?U(E_O{(ﬁ,V),(V,ﬁ)}OE)
12: end if

13: end while

The next lemma considers changes to be made to the decision
space on the denial of an axiom « by characterizing it as unwanted
consequence.

Lemma 9. Let D(O,OF,O’{) = (O?,E, C)7 o e O?, and ID(OA,OF,O#U{O()) =
(Olew, E',C"). Then

° (’);‘;ew = OY\ la,
o BEy exactly if BEy for B, y € O, and
o BCy implies BC'y for B, y € Oy

The lemma shows that the updated decision space can be ob-
tained by removing all axioms that entail «. Furthermore entail-
ments between remaining axioms remain unaltered whereas the
set of conflicts may increase. Algorithm 4 implements the respec-
tive decision space update, additionally exploiting that new con-
flicts can only arise from derivability of the newly declined
axiom «. Algorithms 3 and 4 have to be called in Algorithm 1 after
the accept (line 5) or decline revision step (line 7), respectively.
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For n the number of involved axioms, Algorithms 2-4 run in
time bounded by O(n°) and space bounded by O(n?) if we treat
entailment checking as a constant time operation. Without the lat-
ter assumption, the complexity of reasoning usually dominates. For
example, if the axioms use all features of OWL 2 DL, entailment
checking is N2ExpTime-complete [12], which then also applies to
our algorithm.

Lemma 10. Let D, o- ") be a decision space, o € O’ an axiom. We
denote the size |O| of O with n. Given Do o) and o as input,
Algorithm 4 runs in time bounded by O(n>) and space bounded by O(n?)
if we assume that entailment checking is a constant time operation.

Proof. The execution lines 1-5 of Algorithm 4 can be performed in
quadratic space and cubic time using the same arguments as in
Lemma 5. We execute the operations within the while loop at most
n? times, and under the assumption that entailment checking is a
constant time operation, we find that the operations can again be
performed in cubic time and quadratic space resulting in an overall
bound for the time complexity of O(n°) and O(n?) space
complexity. O

4. Parametrized ranking

Let us look again at our running example, but assume that Axi-
oms (1) and (2) are incorrect, i.e., the validity ratio is 75%. The so
far introduced ranking functions do not take this into account: if
we use impact™, which shows the highest value of 7 for Axiom (1),
then the user would decline the axiom and no automatic decisions
are possible. Next, Axiom (2) is highest ranked, but again declined.
Finally, after presenting Axiom (3) to the user, the axiom is ap-
proved and all remaining axioms can be approved automatically.
The ranking function impact™ even takes 7 steps, whereas guaran-
teed performs slightly better with (theoretically) 2.8 expert deci-
sions. This is an average for the different possible choices among
the highest ranked axioms assuming that these have the same prob-
ability of being chosen. If we look at impact™ again, the problem is
that the function ignores the validity ratio, i.e., Axiom (1) is pre-
sented to the user in the hope of an approval knowing that this could
only happen if the validity ratio was 100% (due to the automatic
approval of all remaining axioms). To address this issue, we now
present a ranking function that takes the validity ratio into account.

4.1. The ranking function norm

We now define the ranking function normg, which minimizes
the deviation of the fraction of accepted and declined axioms from
the expected overall ratios of desired and undesired consequences.
To determine this deviation for each axiom o, we first have to com-
pute the fraction of accepted and declined axioms by normalizing
impacts of o to values between 0 and 1. For this purpose, we define
functions impact,; and impact,,. Since in the case of an approval, we
can possibly both accept and decline axioms automatically, an ap-
proval influences both, the ratio of accepted and declined axioms.
To take both influences into account, in Definition 3 we split the
approval impact accordingly into impact™ and impact™. Along
the same lines, we obtain impact,® and impact," by normalizing
these two components with respect to the expected validity ratio.
On the contrary, in the case of a decline, we can only decline axi-
oms automatically. Therefore, we do not split impact™.

Definition 5. Let O’ be a connected component of the decision
space and R the expected validity ratio. The normalized impact
functions are:

1 +impact™(x)

impact® (o) = . .
pacty” (o) led ;
: +d
impact;(o) = PAC %) act (oc)7
O]
ey g L B )

The ranking functions norm;, normj? and normjy are then
defined by

norm;®(ot) = —|R — impacty® ()|,
norm;;4() = —|1 — R — impact;" (),
normg (o) = —|1 — R — impacty ()|

Finally, the ranking function normg for an axiom o is defined as
max (normg“(or), normg?(or), normp (o) ).

When computing impact;,, we increment it by 1, since we are
interested in the overall fraction of accepted axioms, and, « itself
is one of the accepted axioms. For the same reason, we also incre-
ment impacty by 1, but not impact;d, where « itself is accepted and
does not increment the number of declined axioms.

Table 5 shows the computation of normg7s for Example 1. The
function norm}® captures how the fraction of automatically ac-
cepted axioms deviates from the expected overall ratio of wanted
consequences, e.g., accepting Axiom (2) or (4) deviates by 12.5%:
for the former axiom we have automatically accepted too many
axioms, while for the latter we do not yet have accepted enough
under the premise that the validity ratio is indeed 75%. Since
Example 1 does not allow for automatic declines after an approval,
the function norm;? shows that for each accept, we still deviate
25% from the expected ratio of invalid axioms, which is 1 —R.
The function normy works analogously for declines. Hence, normyg
is defined in a way that it takes the greatest value if the chance that
all wanted (unwanted) axioms are accepted (declined) at once be-
comes maximal.

Note that the expected validity ratio within the corresponding
connected decision space component needs to be adjusted after each
expert decision, to reflect the expected validity ratio of the remain-
ing unevaluated axioms. For instance, after Axiom (2) has been de-
clined, norm; oo needs to be applied to rank the remaining axioms.
If, however, Axiom (3) has been accepted, normy o is required.

Further, it is interesting to observe that employing normgoo for
ranking yields the same behavior as impact™. On the other hand,
norms o corresponds to impact® in case no conflicting axioms are
involved, which is in fact very probable if R is close to 100%. There-
fore, norm represents a generalization of the earlier introduced im-
pact functions impact™ and impact™.

4.2. Learning the validity ratio

Users might only have a rough idea or even no idea at all of the
validity ratio of a dataset in advance of the revision. Hence, it might
be difficult or impossible to decide upfront which R to use for
normg. To address this problem, we investigate how efficiently
we can “learn” the validity ratio on the fly. In this setting, the user
gives a prior estimate for R (or we use 50% as default) and with
each revision of another connected decision space component, R
is adjusted to reflect exactly the actual validity ratio at the current
stage- the proportion of (manually and automatically) approved
axioms within the total set of the evaluated axioms so far. Thus,
the algorithm tunes itself towards an optimal ranking function,
which relieves the user from choosing a validity ratio. We call
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Table 5
The values for normg ;s and the intermediate functions (shown in percentage).

Axiom impacty® (%) impact,f,d (%) impacty (%) normg9s (%) norma% (%) normyg ;5 (%) normo.7s (%)
(1) 100.0 0.0 12.5 -25.0 -25.0 -12.5 -12.5
(2) 87.5 0.0 25.0 -12.5 -25.0 0.0 0.0
3) 75.0 0.0 37.5 0.0 -25.0 -12.5 0.0
(4) 62.5 0.0 50.0 —12.5 -25.0 -25.0 -12.5
(5) 50.0 0.0 62.5 -25.0 -25.0 -37.5 -25.0
(6) 375 0.0 75.0 -37.5 -25.0 —-50.0 -25.0
(7) 12.5 0.0 87.5 -62.5 -25.0 -62.5 -25.0
(8) 12.5 0.0 87.5 —62.5 -25.0 —62.5 -25.0

the according ranking function dynnorm as it dynamically adapts
the estimated validity ratio over the course of the revision.

In our experiments, we show that, already for small datasets,
dynnorm outperforms random ordering and, in case of sufficiently
large datasets, the estimate converges towards the actual validity ra-
tio, thereby making the assumption of a known validity ratio
obsolete.

5. Partitioning

Since reasoning operations, in particular for expressive formal-
isms such as OWL, are very expensive (the reasoner methods take
99.2% of the computation time in our experiments according to our
profiling measurements), we combine the optimization using deci-
sion spaces with a straight-forward partitioning approach that is
applicable for OWL ontologies and splits ABox axioms (i.e., class
and property assertions) into disjoint subsets. Thus, the subse-
quent discussion is specific to OWL reasoning.

Definition 6. Let A be a set of ABox axioms, ind(.A) the set of
individual names used in A, then A is connected if, for all pairs of
individuals a, @’ € ind(A), there exists a sequence dy,...,ad, such
that a = a;, d = ap, and, for all 1 <i < n, there exists a property
assertion in A containing a; and a;.;. A collection of ABoxes
Aq, ..., Ay is a partitioning of A if A=A U---UAy,

ind(A4;) Nnind(A;j) =0 for 1 <i <j <k, and each .4; is connected.

The proposed partitioning process can be done in linear time,
since it is more or less straight-forward product of the computation
of the connected components of the ABox graph. In the absence of
nominals (OWL'’s oneOf constructor), the above described parti-
tions or clusters of an ABox are indeed independent. Thus, the
above partitioning does not split any connected decision space
components, and, therefore, we obtain an equivalent complete
revision state and an equivalent evaluation order within each con-
nected decision space component. We apply partitioning once at
the beginning of the revision to the whole set of unevaluated axi-
oms and then perform the revision for each partition separately by
joining the partition with the remaining terminological axioms. So
far, we abstract from the possibility to update the partitioning to a
more fine-grained one over the course of revision.

In order to also partition non-Abox axioms or to properly take
axioms with nominals into account, other partitioning techniques
can be applied, e.g., the signature decomposition approach by Konev
et al. [13] that partitions the vocabulary of an ontology into subsets
that are independent regarding their meaning. The resulting inde-
pendent subsets of the ontology can then be reviewed indepen-
dently from each other analogously to the clusters of ABox axioms
used in our evaluation. We made the following general
observations:

e In particular in case of large datasets containing several parti-
tions, the additional partitioning-based optimization signifi-
cantly reduces the computational effort.

e Partitioning intensifies the effectiveness of decision spaces,
since the “density” of entailment and contradiction relations
are significantly higher within each partition than the density
within a set of independent partitions.

6. Experimental results

We evaluated our revision support methodology within the
project NanOn aiming at ontology-supported literature search.
During this project, a hand-crafted ontology modeling the scientific
domain of nano technology has been developed, capturing
substances, structures, and procedures used in that domain. The
ontology, denoted here with O, is specified in the Web Ontology
Language OWL 2 DL [14] and comprises 2289 logical axioms. This
ontology is used as the core resource to automatically analyze sci-
entific documents for the occurrence of NanOn classes and proper-
ties by the means of lexical patterns. When such classes and
properties are found, the document is automatically annotated
with them to facilitate topic-specific information retrieval on a
fine-grained level. Note that these annotations are modeled as
ABox facts and must not be confused with OWL annotations, which
do not carry any semantics in OWL 2 DL. In this way, one of the
project outputs is a large amount of class and property assertions
associated with the NanOn ontology. In order to estimate the accu-
racy of such automatically added annotations, they need to be in-
spected by human experts, which provides a natural application
scenario for our approach. The manual inspection of annotations
provided us with sets of valid and invalid annotation assertions
(denoted by A" and A~ respectively). To investigate how the qual-
ity and the size of each axiom set influences the results, we created
several distinct annotation sets with different validity ratios
|A*|/(JAT] +|A7]). As the annotation tools provided rather reliable
data, we had to manually create additional wrong frequently
occurring patterns and apply them for annotating texts to obtain
datasets with a lower validity ratio.

For each set, we applied our methodology starting from the
revision state (OU O~ U A" U A™, O, 07) with O containing the axi-
oms of the NanOn ontology and with O~ containing axioms
expressing inconsistency and class unsatisfiability. We obtained a
complete revision state (OUO UATUA,OUA", 0 UA)
where on-the-fly expert decisions about approval or decline were
simulated according to the membership in A" or .A~. For comput-
ing the entailments, we used the OWL reasoner HermiT.*

For each set, our baseline is the reduction of expert decisions
when axioms are evaluated in random order, i.e., no ranking is
applied and only the revision closure is used to automatically eval-
uate axioms. The upper bound for the in principle possible reduc-
tion of expert decisions is called the optimal ranking, obtained by
applying the “impact oracle” for each axiom o that is to be
evaluated:

4 http://www.hermit-reasoner.com.
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validity ratio optimal norm best unparameterized random
Ly 90% 65.6% 65.4% (impact™) 65.4% 41.7%
Lo 76% 59.8% 59.8% (impact™) 55.8% 35.8%
Ls 50% 47.8% 47.6% (guaranteed) 36.5% 24.4%
Ly 25% 59.9% 59.8% (impact™) 54.9% 37.6%
Ls 10% 63.9% 63.9% (impact™) 63.9% 40.3%
70 %
60 % E
50 % E
40 % b
30% b
20 % b
10% b
0% o ‘ ‘ LT -
0% 10 % 25 % 50 % 76 % 90 %
optimal —H&— impact” @ impact” * @
norm e+ ¥ guaranteed =-w-- random - -l -

Fig. 1. Revision results of norm in comparison with other ranking functions for the sets L;-Ls.

impact® (o) if x € AT,

Knownlmpact(o) = {
ifaoeA .

impact™ (o)

6.1. Evaluation of norm

To compare the effectiveness of impact™, impact™, and guaran-
teed with the parametrized ranking norm, we created five sets of
annotations L; to Ls, each comprising 5000 axioms with validity ra-
tios varying from 10% to 90%.

The table in Fig. 1 shows the results for the different ranking
techniques: the column optimal shows the upper bound achieved
by using the impact oracle, norm shows the results for norm
parameterized with the actual validity ratio, best unparameterized
shows the best possible value achievable with the unparameter-
ized functions, and, finally, the column random states the effort
reduction already achieved by presenting the axioms in random
order. The results show that norm consistently achieves almost
the maximum effort reduction with an average difference of
0.1%. The unparameterized functions only work well for the
high and low quality datasets, as expected, where impact™ works
well for the former case, while impact™ works well for the latter.
For the dataset with validity ratio 50%, norm achieves an
additional 11.1% of automatization by using the parameterized
ranking.

In general, the actual difference in performance achieved by the
more precise parameterized ranking increases for a higher average
maximum path length within connected decision space graphs. To
see this, consider again the decision space shown in Table 3. It is
clear that the distance between the highest ranked axioms for dif-
ferent ranking functions increases as the height of the presented
tree becomes greater.

6.2. Evaluation of dynnorm

In order to evaluate our solution for situations where the valid-
ity ratio is unknown or only very rough estimates can be given

upfront, we analyzed the effectiveness of the dynamically learning
ranking function dynnorm. To this end, we created the following
annotation sets in addition to the datasets L; — Ls:

e small datasets S;-Ss with the size constantly growing from 29
to 102 axioms and validity ratios varying from 10% to 90%,

e medium-sized datasets M;-M; with 500 axioms each and valid-
ity ratios varying from 10% to 91%.

Table 6 shows the results of the revision: the columns optimal
and random are as described above, the column norm shows the re-
sults that we would obtain if we were to assume that the validity
ratio is known and given as parameter to the norm ranking func-
tion, the columns dynnorm, 5y, dynnorm, o, and dynnormg,, show
the results for starting the revision with a validity ratio of 50%,
100%, and 0%, respectively, where over the course of the revision,
we update the validity ratio estimate.

We observe, that, in case of small datasets (S;), the deviation
from norm (on average 5%) as well as the dependency of the re-
sults on the initial value of the validity ratio are clearly visible.
However, the results of dynnorm are significantly better (45.0%)
than those of a revision in random order. It is also interesting
to observe that the average deviation from norm decreases with
the size of a dataset (6.9%, 10.5%, 2.7%, 3.3%, 1.9% for S; to Ss,
respectively) and that the probability of a strong deviation is low-
er for datasets with an extreme validity ratio (close to 100% or
0%).

For medium-sized and large datasets (M; and L;), the deviation
from norm (on average 0.3% for both) as well as the dependency
on the initial value of the validity ratio are significantly lower, as
displayed in Fig. 2.

We conclude that

e ranking based on learning validity ratio is already useful for
small datasets (30-100 axioms), and improves significantly with
the growing size of the dataset under revision;

e in case of large datasets, the performance difference between
the the results with a validity ratio known in advance and a
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Revision results for datasets S;-Ss, M;-Ms, and L;-Ls.

Validity ratio (%) Optimal (%) Norm (%) dynnormgso (%) dynnormy oo (%) dynnormg gy (%) Random (%)
S 90 724 72.4 58.6 724 65.5 40.8
S, 77 68.6 65.7 57.1 62.9 48.6 38.2
S3 48 65.1 65.1 65.1 60.3 61.9 22.0
Sa 25 68.3 68.3 64.6 63.4 67.1 37.6
Ss 10 72,5 72,5 716 67.6 72.5 29.2
M, 91 66.4 66.0 66.2 66.4 65.6 40.8
M, 77 60.0 60.0 59.6 59.8 59.2 38.2
M3 44 40.8 40.6 40.4 40.6 40.4 22.0
My 25 60.0 60.0 59.6 59.2 59.8 37.6
Ms 10 53.2 53.0 52.8 52.8 53.2 29.2
Ly 90 65.6 65.4 65.4 65.4 65.3 41.7
L, 76 59.8 59.8 59.8 59.8 59.9 35.8
L3 50 47.8 47.6 47.4 47.2 47.3 244
Ly 25 59.9 59.8 59.8 59.8 59.8 37.6
Ls 10 63.9 63.9 63.9 63.8 63.9 40.3

learned validity ratio almost disappears, thereby making the
assumption of known average validity ratio obsolete for axiom
ranking.

6.3. Computational effort

During our experiments, we measured the average number of
seconds after each expert decision required for the automatic eval-
uation and ranking as well as the average number of reasoning
calls. If we compute the average values for the revision based on
dynnorm ranking for all 15 datasets, the revision took 0.84 s (7.4
reasoning calls) after each expert decision. In the case of small
datasets, partitioning yields an additional improvement by an or-
der of magnitude in terms of reasoning calls. For medium-sized
datasets without partitioning, the first step out of on average 153
evaluation steps took already 101101 reasoning calls (ca. 3 h) even
when using decision spaces. Without decision spaces and parti-
tioning, the required number of reasoning calls for the revision of
the sets M;—Ms would be more than 500000, judging by the re-
quired reasoning calls to build the corresponding decision space
in the worst case. For this reason, we did not try to run the exper-
iment without partitioning for large datasets, which would require
more than 50 million reasoning calls without decision in the worst
case. In contrast to that, the average number of required reasoning
calls for a complete revision of the sets M;-Ms with partitioning
amounts to 3380. The revision of datasets L,-Ls with partitioning
required overall on average 16175 reasoning calls, which corre-
sponds to between 6 and 7 reasoning calls per evaluation decision.
We can summarize the evaluation results as follows:

e The proposed reasoning-based support performs well in an
interactive revision process with on average 0.84 seconds per
expert decision.

e In particular in case of large datasets containing several parti-
tions, partitioning significantly reduces the computational
effort.

o The employment of decision spaces saves in our experiments on
average 75% of reasoner calls. As measured in the case of small
datasets, partitioning further intensifies the effect of decision
spaces and we save even 80% of reasoner calls.

7. User front-end

Fig. 3 shows the user front-end of the revision helper tool. It al-
lows the user to load the set O of axioms under revision and save
or load an evaluation state for the currently loaded set O. Thereby,
the user can interrupt the revision at any time and proceed later
on. If partitioning is activated, revision helper shows the partitions
one after another and the revision of each partition is independent
from the revision of all other partitions.

By default, revision helper initializes the set @ of undesired
statements with the minimal set of statements expressing the
inconsistency of the ontology or unsatisfiability of its classes. The
set of desired statements O can be initialized by loading an arbi-
trary ontology. A statement can be evaluated by choosing one of
the values Accept and Decline, and it can be excluded from the revi-
sion process by choosing Exclude. The latter option should be used,
if the meaning of a statement is not clear and the user cannot de-
cide whether to accept or to decline it. After the statement has

80 % optimal EE— dynnormy, s, = dynnormy, ,, ===, 0% —
70% L norm M dynnorm, ,, random ——— _E /
S 5%
60 % s 77 r
2 - norm
g 0% 1 S 0%
31 Té -&-dynnorm, o
=
g’ 40 % ] "é‘: dynnormg s
§ 30 % . g -15% —<dynnormy
E random
2 . 8
0% g -20%
>
10 % . 3
-25%
0% ? small (~50)  medium (~500) large (~5000)

small (~50) medium (~500)

size of dataset

large (~5000)

size of dataset

Fig. 2. Effect of learning validity ratio for different data set sizes.
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- Yalé) Revision Helper
File
Accept Decline Exclude Unevaluated Axiom |
o O O (O] SubClassOf ( nanon:lnorganic_polymers nanon:Polymers ) B(‘.
O O O ® ClassAssertion ( nanon:Core_StructuralElement nanon:Core_individual )
O O O [0 InverseObjectProperties ( nanon:isStartingMaterialFor nanon:hasStartingMaterial )
O O O (O] SubClassOf (  nanon:Magnetic_permeability nanon:Electric_permeability )
O O O (O] SubClassOf ( nanon:Titanium_dioxide_nanotube nanon:Nanotube )
0 6 O (O] SubClassOf ( nanon:Magnesium_oxides nanon:Oxide_ceramics )
O O O (= SubClassOf ( nanon:Heating_rate nanon:Process_property )
O O O = SubClassOf { nanon:Base_chemical_role nanon:Material_by_role )
O O O ® SubClassOf ( chebi:CHEBI_28694 nanon:lmported_classes )
O O O (D) SubClassOf (  nanon:Lanthanum_strontium_manganite nanon:Metal_oxides )
O O O (D) SubClassOf (  nanon:Tungsten_disulfide_nanotube nanon:tungsten_disulfide )
Sorting: | justintime [$] ( AcceptAll ) ( DeclineAll ) ( Undo ) ¥ Propagate Decisions

Current percentage of accepted axioms to declined: 0%; automatically evaluated: 0%; left: 2778,

Fig. 3. Revision helper GUIL

been evaluated, it disappears from the revision list as well as all
statements that could be evaluated automatically, unless the
checkbox Propagate Decisions is deactivated. The ranking strategy
used for sorting the statements can be selected or deactivated at
any time and is taken into account after the next evaluation deci-
sion. At any stage of the revision, it is possible to export the current
set OF of accepted statements as an ontology. For the export, we
exclude, however, axioms with which OF has been initialized at
the beginning of the revision.

8. Related work

In our previous work [15], we proposed an approach for
determining a beneficial order of axiom evaluation under the
assumption of a high validity ratio within the axiom set under inves-
tigation. The latter approach aims at reducing the manual effort of
revision by eliminating the redundancy within the corresponding
axiom set, which is the major factor leading to automatic axiom
evaluation under the assumption of a high validity ratio.

In addition to our own work, we are aware of two approaches
for supporting the revision of ontological data based on logical
appropriateness: an approach by Meilicke et al. [16] and another
one called ContentMap by Jiménez-Ruiz et al. [17]. Both approaches
are applied in the context of mapping revision. An extension of
ContentMap called ContentCVS [18] supports an integration of
changes into an evolving ontology. In all of these approaches,
dependencies between evaluation decisions are determined based
on a set of logical criteria each of which is a subset of the criteria
that can be derived from the notion of revision state consistency
introduced in Def. 1.

In contrast to our approach, ContentMap and ContentCVS focus
on the visualization of consequences and user guidance in case of
difficult evaluation decisions. These approaches selectively materi-
alize and visualize the logical consequences caused by the axioms
under investigation and support the revision of those conse-
quences. Subsequently, the approved and declined axioms are
determined in correspondence with the revision of the conse-
quences. The minimization of the manual and computational effort
required for the revision is not considered. In contrast to our ap-
proach, which requires at most a polynomial number of entailment
checks, ContentMap and ContentCVS require an exponential num-

ber of reasoning operations compared to the size of the ontology
under revision. The reason for this is that ContentMap and Content-
CVS determine the dependencies between the consequences by
comparing their justifications, i.e., sets of axioms causing the entail-
ment of the consequence.

Similarly to our approach, Meilicke et al. aim at reducing the
manual effort of mapping revision. However, their results are diffi-
cult to generalize to the revision of ontologies, since the notion of
impact is defined based on specific properties of mapping axioms.
For every mapping axiom possible between the entities of the two
mapped ontologies O, and O,, they define the impact as the corre-
sponding number of possible entailed and contradicting mapping
axioms. The assumption is that the set of possible mapping axioms
and the set of possible axioms in ©; and O, are mostly disjoint,
since axioms in O; and O, usually refer only to entities from the
same ontology, while mapping axioms are assumed to map only
entities from different ontologies. In case of ontology revision in
general, no such natural distinction criteria for axioms under revi-
sion can be defined. Moreover, in contrast to our approach, Mei-
licke et al. abstract from the interactions between more than one
mapping axiom.

Another strand of work is related to the overall motivation of
enriching ontologies with additional expert-curated knowledge
in a way that minimizes the workload of the human expert: based
on the attribute exploration algorithm from formal concept analysis
[19], several approaches have proposed structured interactive enu-
meration strategies of axioms of certain fragments of OWL which
then are to be evaluated by an expert [20,21]. While similar in
terms of the workflow, the major difference of these approaches
to ours is that the axioms are not pre-specified but created on
the fly and, therefore, the exploration may require (in the worst
case exponentially) many human decisions.

9. Summary

In this paper, we proposed a methodology for supporting ontol-
ogy revision based on logical criteria. We stated consistency crite-
ria for revision states and introduced the notion of revision closure,
based on which the revision of ontologies can be partially
automatized.
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Even though a significant effort reduction can be achieved when
axioms are chosen randomly for each expert decision, an evaluation
of the axioms in an appropriate order usually yields a higher effort
reduction. We introduced the notion of axiom impact, which can
directly be used to define axiom ranking functions that work well
for data of either high or low quality. In order to achieve significant
improvements for data with an arbitrary validity ratio, we further
refine the ranking functions to take into account the estimated
validity ratio of the ontology under revision. We then show how
the validity ratio can be learned on-the-fly over the course of the
revision, which alleviates the user from having to provide such an
estimate.

Moreover, we provide an efficient and elegant way of determin-
ing the revision closure and axiom impact by computing and
updating structures called decision spaces which saved 75% of rea-
soner calls during our evaluation.

We present the implementation of the approach including an
optimization based on partitioning, which significantly reduces
the required computational effort. We evaluate our implementa-
tion in a revision of ontology-based annotations of scientific publi-
cations comprising over 25000 statements and show that

e On average, we were able to reduce the number of required
evaluation decisions by 36% when the statements were
reviewed in an arbitrary order, and by 55.4% when the unpa-
rameterized ranking techniques were used. The parametrized
ranking technique almost achieved the maximum possible
automatization (59.4% of evaluation decisions) thereby
reducing the manual effort of revision by 59.3%. The gain of
the parametrized compared to the unparameterized ranking
functions is particularly important for datasets with a valid-
ity ratio close to 50% (we observed an up to 11.1% improve-
ment), since for those datasets the potential of automatization
cannot be fully exploited without parameterizing the ranking
function.

o In case of large datasets with an unknown validity ratio, learn-
ing the validity ratio is particularly effective due to the law of
large numbers. In our experiments, the proportion of automat-
ically evaluated statements is nearly the same as in case where
the validity ratio is known a priori and is used as a fixed param-
eter of norm, thereby making the assumption of known average
validity ratio not necessary for axiom ranking.

e The proposed reasoning-based support is feasible for an interac-
tive revision process requiring on average less than one second
after each expert decision in our evaluation.

As part of our future work, we intend to study more general
partitioning methods, e.g., [13], to increase the applicability of
the partitioning optimization. Also the currently proposed parti-
tioning could be further developed. The initially determined sets
remain independent during the whole revision process. However,
a single partition could potentially be further divided after some
evaluation decisions, e.g., after rejecting an axiom a partition might
fall apart into two partitions. We do not yet take such further
refinements into account and simply stick to the originally defined
partition, however it would be interesting to investigate whether
such an additional partition refinement pays off. Another interest-
ing approach in this direction would also be to study the effects of
separating the ontology into parts that are not logically indepen-
dent. In such a case, we might miss automatic decisions, but the
potential performance gain, due to the reasoning with smaller sub-
sets of the ontology, might compensate for this drawback.
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