
Worst-case Optimal Reasoning for the Horn-DL Fragments of OWL 1 and 2∗

Magdalena Ortiz† and Sebastian Rudolph‡ and Mantas Šimkus†
†Vienna University of Technology, Austria ‡Karlsruhe Institute of Technology, Germany
{ortiz,simkus}@kr.tuwien.ac.at rudolph@kit.edu

Abstract

Horn fragments of Description Logics (DLs) have gained
popularity because they provide a beneficial trade-off be-
tween expressive power and computational complexity and,
more specifically, are usually tractable w.r.t. data complexity.
Despite their potential, and partly due to the intricate inter-
action of nominals (O), inverses (I) and counting (Q), such
fragments had not been studied so far for the DLs SHOIQ
and SROIQ that underly OWL 1 and 2. In this paper, we
present a polynomial and modular translation from Horn-
SHOIQ knowledge bases into DATALOG, which shows that
standard reasoning tasks are feasible in deterministic single
exponential time. This improves over the previously known
upper bounds, and contrasts the known NEXPTIME com-
pleteness of full SHOIQ. Thereby, Horn-SHOIQ stands
out as the first EXPTIME complete DL that allows simultane-
ously forO, I, andQ. In addition, we show that standard rea-
soning in Horn-SROIQ is 2-EXPTIME complete. Despite
their high expressiveness, both Horn-SHOIQ and Horn-
SROIQ have polynomial data complexity. This makes
them particularly attractive for reasoning in semantically en-
riched systems with large data sets. A promising first step in
this direction could be achieved exploiting existing DATALOG
engines, along the lines of our translation.

Introduction
In the Semantic Web, an ontology specifies a common con-
ceptualization of an application domain. This conceptual-
ization should support access to distributed data repositories
by different applications, and enable software agents to ex-
change information independently of their possibly different
internal representations. Such a view of ontologies as means
to access complex data sources is also advocated in other ar-
eas like ontology-based data access, data and information
integration and peer-to-peer data management. As specifi-
cation formalisms for these ontologies, the Web Ontology
Languages (OWL) proposed by the World Wide Web Con-
sortium (W3C) are now a widely accepted standard.

The OWL languages are based on Description Logics
(DLs), a family of expressive languages for knowledge rep-
resentation (Baader et al. 2007). In particular, OWL 1 DL
and OWL 2 DL, the most expressive decidable species of the
∗This work was partially supported by (†) the Austrian Science

Fund (FWF) grant P20840, the EC project OntoRule (IST-2009-
231875), the (CONACYT) grant 187697, and (‡) the project Ex-
presST funded by the Deutsche Forschungsgemeinschaft (DFG).
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

OWL standards, are based on the DLs known as SHOIQ
and SROIQ. The distinguishing feature of these two DLs
is the presence of nominals (O), inverses (I) and count-
ing (Q). The combination is considered hard to handle,
and it is known to increase the complexity of reasoning
w.r.t. other related DLs (see later). SHOIQ and SROIQ
are receiving wide attention, and several authors have pre-
sented algorithms to support automated reasoning over their
ontologies in the last years (cf. (Horrocks & Sattler 2005;
Kazakov & Motik 2008; Tobies 2000)).

The data complexity of reasoning plays an increasingly
important role in DL applications. In particular, when
DL ontologies are used as formalizations of complex data
sources, it is imperative that efficiency of reasoning scales
well in the presence of large amounts of data. Formally, the
data complexity of a DL is the complexity of reasoning in
knowledge bases (KBs) where the terminological part is as-
sumed to be fixed while the assertional information (ABox)
varies. The intractability of data complexity in most stan-
dard DLs, including very restricted sublogics of SHOIQ
and SROIQ, fostered the development of tailored DLs,
where syntactic restrictions are applied to reduce the com-
plexity, e.g., the DL-Lite family (Calvanese et al. 2007), and
EL (Baader 2003). Among other restrictions, these logics
prohibit disjunction, and they can be seen as Horn fragments
of first order logic. In (Hustadt, Motik, & Sattler 2005), the
Horn fragment of SHIQ (the DL underlying OWL 1 Lite)
was introduced and its polynomial data complexity estab-
lished (as opposed to CO-NP completeness in full SHIQ).
Since then, Horn fragments of other DLs have gained atten-
tion (cf. (Krötzsch, Rudolph, & Hitzler 2007)).

In this paper we study the Horn fragments of SHOIQ
and SROIQ, and provide a DATALOG-based reasoning
method that yields optimal upper bounds for the combined
and data complexity of the two fragments. Our main contri-
butions can be summarized as follows:
• We present a polynomial and modular reduction from

KB satisfiability in Horn-SHOIQ to consistency of a DAT-
ALOG program. This novel reasoning method shows that
the former problem can be decided in deterministic single
exponential time in the size of the input knowledge base.
The result extends to other standard reasoning tasks over
Horn-SHOIQ knowledge bases such as subsumption and
instance checking, which are polynomially reducible to KB
satisfiability (Krötzsch, Rudolph, & Hitzler 2007).
• The EXPTIME upper bound we obtain for standard rea-

soning in Horn-SHOIQ is tight. It improves over the

previously known upper bounds, and contrasts the known
NEXPTIME completeness of full SHOIQ. Notably, Horn-
SHOIQ stands out as the first DL in EXPTIME complete
DL allowing simultaneously for O, I, and Q.
• We show that standard reasoning in Horn-SROIQ is

2-EXPTIME complete. The upper bound follows from our
DATALOG reduction together with a (possibly exponential)
translation from Horn-SROIQ into Horn-SHOIQ. The
lower bound is given by a reduction of a deterministic Turing
machine running in double exponential time. In contrast,
full SROIQ is 2-NEXPTIME complete (Kazakov 2008).
• Finally, via the DATALOG encoding, we show that de-

spite their high expressiveness, both Horn-SHOIQ and
Horn-SROIQ have polynomial data complexity.

In summary, our results identify Horn-SHOIQ and
Horn-SROIQ as particularly attractive DLs for knowledge
representation and reasoning in semantically enriched sys-
tems with large data sets. A promising next step in this di-
rection could be to exploit existing efficient DATALOG en-
gines for reasoning over ontologies in these expressive log-
ics, along the lines of our translation.

The DLs Horn-SROIQ and Horn-SHOIQ
The DL SROIQ was introduced in (Horrocks, Kutz, &
Sattler 2006). Here we define Horn-SROIQ, a fragment
of SROIQ that disallows disjunction, establishing a corre-
spondence to a Horn fragment of first-order logic with equal-
ity. Without loss of generality, we focus on a normal form
close to the one in (Krötzsch, Rudolph, & Hitzler 2007).

As usual, we assume countably infinite sets NC, NR and NI

of concept names, role names, and individuals respectively;
we also assume {>,⊥} ⊂ NC. If p ∈ NR, then p and p− are
roles, and their respective inverses are p̄ = p− and p− = p.

As in full SROIQ, a generalized role inclusion axiom
(RIA) has the form s1 ◦ . . . ◦ snv r, where r and each si are
roles. A set of RIAs R is regular if there is a strict partial
order ≺ on the roles such that s ≺ r iff s̄ ≺ r, and each RIA
in R is of one of the forms (i) to (v) in Table 1. The simple
roles in R are defined inductively: (a) p ∈ NR is simple if
each RIA with p in its right-hand-side has the form sv p for
some simple s; and (b) p− is simple if p is simple.

A TBox T is of the form R ∪ T ′, where R is a regular
set of RIAs and T ′ is a set of axioms of the forms (vi) to
(xii) in Table 1.1 A Horn-SROIQ knowledge base (KB) is
a tuple K=〈T ,A〉, where T is a TBox and the ABox A is a
non-empty set of assertions of the forms (xiii) and (xiv).

The DL Horn-SHOIQ is obtained by restricting
Horn-SROIQ as follows: 1. only RIAs of the forms (i),
(ii’) and (v) are allowed; 2. disjointness axioms (vi) are dis-
allowed; and 3. concepts of the form ∃r.Self are disallowed.

The semantics of KBs is given by interpretations I =
〈∆I , ·I〉, which map each a∈NI to some aI ∈∆I , each
A∈NC to some AI ⊆ ∆I , and each r ∈ NR to some
rI ⊆ ∆I×∆I , such that >I = ∆I and ⊥I = ∅. The map

1RIAs and role assertions are usually considered to constitute a
third component called RBox; we consider them part of the TBox
instead. The other role assertions usually allowed in SROIQ are
expressible in the usual way, cf. (Horrocks, Kutz, & Sattler 2006).

Syntax Semantics

(i) p−v p p−
I ⊆ pI TBox

(ii) wv p wI ⊆ pI
(ii’) s1v p s1

I ⊆ pI
(iii) p ◦ wv p pI ◦ wI ⊆ pI
(iv) w ◦ pv p wI ◦ pI ⊆ pI
(v) p ◦ pv p pI ◦ pI ⊆ pI

(vi) Disj(s, s′) sI ∩ s′I = ∅
(vii) AuBvC AI ∩BI ⊆ CI
(viii) Av∀r.B AI ⊆ {d | ∀d′.〈d, d′〉∈rI→ d′∈BI}
(ix) Av∃r.B AI ⊆{d | ∃d′.〈d, d′〉∈rI ∧ d′∈BI}
(x) ∃r.AvB {d | ∃d′.〈d, d′〉∈rI ∧ d′∈BI}⊆AI
(xi) Av61 s.B AI ⊆ {d | NIs,B(d) ≤ 1}
(xii) Av>ms.B AI ⊆ {d | NIs,B(d) ≥ m}
(xiii) a:A aI ∈ AI ABox
(xiv) (a, b):r 〈aI , bI〉 ∈ rI

Table 1: Syntax and semantics of Horn-SROIQ. Here m ≥ 0,
a, b ∈ NI, p ∈ NR, r is a role, and s and s′ are simple roles. Fur-
ther, w = s1 ◦ . . . ◦ sn n ≥ 1 and, for each 1≤ i≤n, si is a role
with si ≺ p. ConceptsA,B, andC are either concept names, nom-
inals of the form {a}, or of the form ∃p.Self . For an interpretation
I, we have wI = s1

I ◦ . . . ◦ sn
I , where ◦ is overridden to denote

relational composition, (p−)
I

= {〈d′, d〉 | 〈d, d′〉 ∈ pI}, {a}I =
{aI}, and (∃p.Self)I = {d | 〈d, d〉 ∈ pI}. Finally, NIs,B(d) de-
notes the cardinality of the set {d′ | 〈d, d′〉 ∈ sI ∧ d′ ∈ BI}. The
boldface roman numbers indicate the expressions that may appear
in normal Horn-ALCHOIQDisj

Self KBs.

·I is extended to all concepts and roles as usual, cf. Table 1.
We say that I is a model of K, in symbols I |= K, if it
satisfies all axioms in the TBox and all assertions in the
ABox. The KB satisfiability problem consists on deciding,
for a given a KB K, whether there is an I such that I |= K.

Finally, we observe that every Horn-SROIQ KB K can
be rewritten into an equisatisfiable K′ as follows: 1. ax-
ioms of the form ∃r.A v B are rewritten as A v ∀r̄.B;
2. >ms.B is expressed via auxiliary roles, Disj and ∃ (cf.
(Rudolph, Krötzsch, & Hitzler 2008)); and 3. RIAs with
non-simple roles are eliminated using the standard automa-
ton encoding provided in (Kazakov 2008). The resulting
K′ is a normal Horn-ALCHOIQDisj

Self KB. Step 1 is poly-
nomial in K, and so is 2 assuming that in each >ms.B, m
is encoded in unary. For full SROIQ step 3 may result in
an exponentially larger KB, but it remains polynomial for
Horn-SHOIQ.
Proposition 1. For every Horn-SROIQ KB K, there is a
normal Horn-ALCHOIQDisj

Self KB K′ that is satisfiable iff K
is. The size of K′ is bounded by an exponential function in
the size ofK, andK′ can be effectively constructed fromK in
single exponential time. If K is in Horn-SHOIQ, then the
size ofK′ and the time required to construct it are polynomi-
ally bounded (assuming that numbers are encoded unary).

Deciding KB satisfiability
In this section we provide a method to decide the satisfia-
bility of a given normal Horn-ALCHOIQDisj

Self KB K by a
polynomial reduction to DATALOG. The language of DATA-
LOG that we employ is formally defined next.

DATALOGS

We introduce an extension of standard DATALOG that we
call DATALOGS. It supports set sorts that facilitate the ma-
nipulation of sets, allowing for a simpler description of the
reduction. We will see below that DATALOGS is not more
expressive and can be rewritten into the standard one.

Definition 1 (DATALOGS). Fix a countably infinite set C
of constants. We call C the element sort. Given any finite
S ⊂ C, 2S is called an S-sort (and a set sort if the particular
S is not relevant). The element sort and all set sorts are
sorts. Let NRel be a countably infinite set of relation names,
where each R ∈ NRel is associated to an arity n(R) ≥ 0.
Each R ∈ NRel is assigned a sort function σR that maps each
position 0 < i ≤ n(R) to a sort. The sort signature of R is
Σ(R) = {S|∃i ∈ {1, . . . , n(R)} : σR(i) is an S-sort}.

For each sort S, let VS be a countably infinite set of S-
variables. Then each t ∈ VS ∪ S is an S-term.2 Addition-
ally, if S is a set sort and t1 and t2 are S-terms, then t1 ∪ t2
is an S-term. Then an atom is an expression R(t1, . . . , tn),
where for each 1 ≤ i ≤ n(R), ti is an σR(i)-term.

A rule is an expression R of the form b1, . . . , bn → h,
where {b1, . . . , bn} is a possibly empty set of body atoms,
and h is a head atom or blank. If h is blank,R is a constraint.
For each ruleRwe require safety: each variable occurring in
a head atom ofR also occurs in some body atom ofR. Rules
with no body atoms are facts, all other rules are intensional
rules. A program is a finite set of rules. The sort signature
Σ(P) of P is the union of Σ(R) over all relations R of P . A
term (resp., atom, rule, program) is ground if it contains no
variables. A ground rule R′ is a ground instance of a rule R
if R′ can be obtained from R by replacing each S-variable
occurring in R by some ground term t ∈ S.

An interpretation I for a program P maps each n-ary
relation R of P to a set RI ⊆ σR(1)×· · ·×σR(n). The
evaluation e(t) of a ground S-term t is defined as fol-
lows: (i) e(t) = t if t ∈ S , and (ii) e(t) = e(t1) ∪ e(t2) if
t = t1 ∪ t2. A ground atom R(t1, . . . , tn) is true in I if
〈e(t1), . . . , e(tn)〉 ∈ RI . I satisfies a ground constraint r, if
r contains a body atom that is false in I . For all remaining
ground rules r, I satisfies r if the head atom of r is true in I
whenever all body atoms of r are true in I . I is a model of a
program P if I satisfies each ground instance of each rule in
P . P is consistent if it has model. Given two interpretations
I and J for P , we write J ≺ I if (i) for each relation R of P ,
we have RJ ⊆ RI , and (ii) for some relation R the inclusion
is strict. A model I of P is minimal if there exists no model
J of P such that J ≺ I .

A (standard) DATALOG program P is a DATALOGS pro-
gram with Σ(P) = ∅. As in the standard case, every con-
sistent DATALOGS program P has a unique minimal model,
called the least model of P .

Example 1. The following DATALOGS program P , where
all arguments have sort 2S (i.e., are of S-sort), defines the
subset relation over 2S :

2By allowing the use sets of constants as (syntactic) terms, we
tacitly assume that they have a suitable syntactic representation.

→ Set(S),
Set(X ∪Y) → Set(X),
Set(X ∪Y) → SubsetOf(X,X ∪Y).

Indeed, for any t1, t2 ⊆ S, if I is the least model model of
P then SubsetOf(t1, t2) is true in I iff t1 ⊆ t2.

Given the above (polynomial) axiomatization of the subset
relation for an S-sort, we can w.l.o.g. assume the availability
in DATALOGS of a ‘built-in’ ⊆ predicate, which we use in
infix notation. We further use c ∈ t as an abbreviation for
{c} ⊆ t, and use ∪ in place of ∪ in what follows.

Recall that consistency in plain DATALOG is EXPTIME-
complete. If the intensional rules are fixed, i.e., the case of
data complexity, the problem drops to PTIME-completeness
(see e.g. (Dantsin et al. 2001)). The presence of set sorts
in DATALOGS does not increase the complexity: via a poly-
nomial translation into DATALOG, which is given in the ap-
pendix, we obtain the following result.

Theorem 2. Testing consistency of a DATALOGS program
P is feasible in exponential time in the combined size of P
Σ(P). If the intensional rules and the sort signature Σ(P)
of P are fixed, checking consistency of P is feasible in poly-
nomial time in the size of P .

Reduction to DATALOGS

Assume a normal Horn-ALCHOIQDisj
Self KB K = 〈T ,A〉.

We present here a (polynomial) satisfiability preserving
translation of K into a DATALOGS program PK, which can
in turn be polynomially converted into plain DATALOG.

The challenge is the following: Kmight have infinite (and
only infinite) models, while models of DATALOG programs
are always finite relational structures. For this reason, we
do not use rules to build models of K. Instead, we use rules
to derive the different combinations of concepts (types) and
the different relations between types that must appear in ev-
ery model of K. If no contradictions are encountered in this
derivation, then a model of K exists and it can be assem-
bled from the derived types and relations. We exploit the
fact that K is Horn: by explicating the relevant relations that
must appear in every model of K, we obtain one single uni-
versal model whenever K is satisfiable. Furthermore, due to
the absence of disjunction, this derivation can be carried out
deterministically using DATALOG.

Definition 2. We denote by NR(K) (resp., NI(K), NI(T))
the set of all role names (resp., individuals) occurring in K
(resp., T), and we let NR(K) = NR(K)∪{r̄ | r∈NR(K)}.
C(K) denotes the following set of concepts: (1) if C ∈ NC

or C = {a} for some a ∈ NI(T), and C occurs in K, then
C ∈ C(K), and (2) ∃r.Self ∈ C(K) for every r ∈ NR(K). A
type is any set τ ⊆ C(K). For each element d in the domain
of an interpretation I, we say that d realizes a type τ , if
d ∈

⋂
C∈τ C

I , i.e. d satisfies each concept in τ .3

For the encoding, we view roles, individuals, and con-
cepts as constants. To manipulate types and sets of roles,

3Note that τ only needs to be contained in the set of concepts
C such that d ∈ CI , but not to be equal to it.

we use two set sorts: argument positions of C(K)-sort and
NR(K)-sort are used for subsets of C(K) (i.e. types) and sub-
sets of NR(K), respectively. In the following we use (pos-
sibly subscripted) variables T,R,X for types, sets of roles
and individuals, respectively.

The rules of PK define several relations over individuals,
types, and sets of roles. In particular they define two re-
lations called realized and enf. The former will store the
types realized in models of K, while enf will provide triples
〈τ1, ρ, τ2〉 which, intuitively, read as follows: if an element
d realizes τ1, then it must have a successor d′ such that d
and d′ are related by the roles in ρ, and d′ realizes τ2. As we
shall see, K is satisfiable iff a model can be built using the
types and sets of roles in these relations.

We now provide the rules of PK, which define realized,
enf, and several auxiliary relations.

Basic implications. First we introduce the binary relation
imp over types: intuitively, imp(τ1, τ2) is true iff τ1 implies
τ2, i.e., if in every model of K, every d that realizes τ1 also
realizes τ2.

Since imp must capture all concept implications that arise
from the TBox axioms, we initialize it with a ground fact for
each axioms of type A uB v C in T as follows:

→ imp({A,B}, {C}). (1)

The imp relation must be implicational in the sense that it
is closed under the following rules:

→ imp({}, {>}), → imp({⊥},C(K)),

T1 ⊆ T2 → imp(T2, T1),

imp(T1, T2), imp(T2, T3) → imp(T1, T3),

and, for each C ∈ C(K),
imp(T1, T2) → imp(T1∪{C}, T2∪{C}).

(2)

Enforced relations. The enf predicate is a ternary relation
with sorts 〈C(K),NR(K),C(K)〉. Formally, a type τ1 en-
forces a ρ-successor τ2, if in every model I of K, for each
domain element d that realizes τ1, there exists an element d′
realizing τ2 such that 〈d, d′〉 ∈

⋂
r∈ρ r

I .
We initialize enf with the following fact for each axiom

of type A v ∃r.B in T :
→ enf({A}, {r}, {B}). (3)

Further, if τ1 enforces a ρ-successor τ2, then any τ ′1 that im-
plies τ1 also enforces an ρ-successor realizing τ2, and every
τ ′2 implied by τ2. This is ensured with the following rule:
enf(T1, R, T2), imp(T ′1, T1), imp(T2, T

′
2)→ enf(T ′1, R, T

′
2) (4)

To ensure satisfiability of K, we require that for every tuple
in the enf relation, ρ is compatible with the RIs in T . This
is achieved with the following rules for each r v s in T :

enf(T1, R, T2), r ∈ R → enf(T1, R ∪ {s}, T2)
enf(T1, R, T2), r̄ ∈ R → enf(T1, R ∪ {s̄}, T2).

(5)

Also, if the enf relation contains a tuple 〈τ1, ρ, τ2〉 where
ρ violates some disjointness axiom, then the type τ1 causes
an inconsistency. This is reflected in the following rules for
each axiom Disj(r, s) in T :

enf(T1, R, T2), {r, s} ⊆ R → imp(T1, {⊥}),
enf(T1, R, T2), {r̄, s̄} ⊆ R → imp(T1, {⊥}). (6)

The effect of GCIs of the form A v ∀r.B is also captured
in the enf relation. First, if some τ enforces a ρ-successor
that realizes τ2, and we have A ∈ τ and r ∈ ρ, then the
successor must also satisfy B. On the other hand, if ρ con-
tains the inverse of r and A ∈ τ2, then each element real-
izing τ1 must also satisfy B. Hence, for all axioms of type
Av ∀r.B, we have:

enf(T1, R, T2), A ∈ T1, r ∈ R→ enf(T1, R, T2 ∪ {B}),
enf(T1, R, T2), r̄ ∈ R,A ∈ T2→ imp(T1, {B}).

(7)

For handling the number restrictions we set up a new
predicate inv that holds between a set of roles and its
role-wise inverse. This is easily done using the next two
rules for each r∈NR(K):

→ inv({r}, {r̄}),
inv(R1, R2)→ inv(R1∪{r}, R2∪{r̄}).

(8)

We deal with the axioms A v≤ 1r.C by appropriately
merging types and sets of roles. We have to consider two
situations. First, if a type enforces several successor types,
then they must be merged if the number restrictions apply.
This is done by adding for each A v≤ 1r.C ∈ T the rule:

enf(T,R1, T1),enf(T,R2, T2),
A∈T, r∈R1, r∈R2, (9)

C ∈T1, C ∈T2→ enf(T,R1∪R2, T1∪T2)

The second, slightly more complicated situation, is the fol-
lowing. Assume an axiom A v≤ 1r.C, and assume that
some type τ2 with A ∈ τ2 enforces a ρ2-successor τ3 with
r ∈ ρ2 and C ∈ τ3. Suppose also that τ2 is itself enforced
as an ρ1-successor of some τ1 with r̄ ∈ ρ1 and C ∈ τ1. In
this case we need to ‘merge’ τ1 and τ3, along with the corre-
sponding roles. I.e. any domain element realizing τ1 must
also realize τ3, and the roles relating τ1 and τ2 must be aug-
mented with the role-wise inverse of ρ2. This is captured by
the following pair of rules for each A v≤ 1r.C in T :

enf(T1, R1, T2),enf(T2, R2, T3),
A∈T2, r∈R2, r̄∈R1,

C ∈T1, C ∈T3, inv(R2, R
′
2)→H

(10)

for H = imp(T1, T3) and enf(T1, R1 ∪R′2, T2).

Dealing with Self-loops. So far we have treated concepts
of the form ∃r.Self in the same way as concept names. Now
we make sure that they are given the right semantics. First,
every τ that contains some ∃r.Self concept enforces itself as
successor type:

{∃r.Self} ∈ T → enf(T, {r}, T). (11)

Self ‘loops’ must also be compatible with the disjointness
axioms, role inclusions, and the universal restrictions. In
what follows, we will use r̂ to denote r if the role r is in NR,
and r̄ otherwise. For each axiom Disj(r, s), r v s, and A v
∀r.B of T we have a rule (12), (13) and (14), respectively:

{∃r̂.Self,∃ŝ.Self} ∈ T → imp(T, {⊥}), (12)
→ imp({∃r̂.Self}, {∃ŝ.Self}), (13)
→ imp({A,∃r̂.Self}, {B}). (14)

To capture the effect of number restrictions in the presence
of ∃r.Self concepts, we add the following rules for each

A v≤ 1r.C ∈ T and each r′ ∈ NR(K):

enf(T1, R, T2),r ∈ R,
C ∈ T2,{A,∃r̂.Self}⊆T1→ imp(T1, T2),

enf(T1, R, T2),{r̄, r′}⊆R,
C ∈ T1, {A,∃r̂.Self, C}⊆T2,→ imp(T1, {∃r′.Self}),

enf(T1, R, T2),{r, r′}⊆R
C ∈T2, {A,∃r̂.Self}⊆T1→ imp(T1,{∃r′.Self}).

(15)

Nominals. There are two important things about nominals.
First, if {a} is a nominal in T , then each model of K must
realize some type τ with {a}∈ τ . On the other hand, in each
model ofK there is a unique domain element satisfying {a}.

As already mentioned, we use the unary realized relation
to store the realized types. Formally, a type τ is realized if
in any model I of K there exists an element that realizes τ .
Then the realization of types containing nominals is initiated
by the following fact for each {a} ∈ C(K):

→ realized({{a}}) (16)

If a type τ is realized, then all the types that it implies and
that it enforces are also realized:

realized(T1), enf(T1, R, T2) → realized(T2)
realized(T1), imp(T1, T2) → realized(T2)

(17)

Further, inconsistent types containing {⊥} may not be real-
ized anywhere in the models of K:

realized({⊥})→. (18)

To ensure the uniqueness of a domain element satisfying
a nominal, we use a binary same relation over types. Intu-
itively, if same(τ1, τ2) is true, then we must identify any pair
of elements d1 and d2 satisfying τ1 and τ2, respectively. For
each {a} ∈ C(K), we add:

realized(T1), realized(T2),
{a} ∈ T1, {a} ∈ T2→ same(T1, T2).

(19)

Clearly, pairs of types in the same relation imply each other,
and their union is also realized:

same(T1, T2)→ imp(T1, T2),
same(T1, T2)→ realized(T1 ∪ T2).

(20)

Tuples in same may witness the existence of self-loops and
enforced relations:

enf(T1, {r}, T2), same(T1, T2)→ imp(T1, {∃r̂.Self}),
enf(T1, R1, T3),enf(T2, R2, T4),

same(T1, T2), same(T3, T4)→ enf(T1, R1 ∪R2, T3).

(21)

We must also take care of the relations to nominals: in
the presence of number restrictions, elements that have re-
lations to nominals might need to be identified (e.g. if they
both have some nominal as r successor, and the nominal can
only have one incoming r arc). In fact, whole sequences of
domain elements leading to a nominal might need to be ‘col-
lapsed’ into one single sequence of pseudo nonimals. This
is captured by propagating same over the enf relation. For
all axiom A v≤ 1r.C ∈T we add:

realized(T1), enf(T1, R1, T3),
realized(T2), enf(T2, R2, T4),

C ∈ T1, C ∈ T2,
r̄ ∈ R1, r̄ ∈ R2, A ∈ T3,

same(T3, T4)→ same(T1, T2)

(22)

This finishes the encoding for the TBox T . Since nominals
can be used to simulate ABoxes, this encoding could already
be used as a procedure for KB satisfiability. However, in
order to obtain optimal data-complexity results, we add rules
that handle the ABox explicitely.
Encoding the ABox Assertions. For handling the concept
assertions in A, we define a binary relation realizes over in-
dividuals and types. Intuitively, realizes(a, τ) means that the
element interpreting amust realize τ . For all assertions a :A
and all individuals a ∈ NI(T), we add the following facts:

→ realizes(a, {A}), (23)

→ realizes(a, {a}). (24)
The next rules capture general properties of realization:

realizes(X,T1), imp(T1, T2) → realizes(X,T2)

realizes(X,T1), realizes(X,T2) → realizes(X,T1 ∪T2) (25)

realizes(X,T) → realized(T).

For the role assertions we proceed similarly. We define
a ternary predicate realize over individuals and sets of roles:
realize provides us the triples 〈a, b, ρ〉 such that in any model
I of K, 〈aI , bI〉 ∈ rI for all r ∈ ρ. We add the following
fact for each role assertion (a, b):r in T :

→realize(a, b, {r}). (26)

For each r ∈ NR(K), we have a rule to explicate the inverse
relations, and a rule for aggregating realized role sets:

realize(X1, X2, R), r ∈ R → realize(X2, X1, {r̄}), (27)

realize(X1, X2, ρ1),

realize(X1, X2, ρ2) → realize(X1, X2, ρ1 ∪ ρ2) (28)
In the realize relation we must also reflect the connec-

tions stemming from enforced relations to (pseudo) nomi-
nals. This is formalized by following rule:

realizes(X1, T1), enf(T1, R, T2),

same(T2, T2), realizes(X2, T2) → realize(X1, X2, R) (29)
To ensure that the meaning of ∃r.Self concepts is reflected

in the realize relation, we add, for each r ∈ NR(K):
realize(X1, X1, {r}) → realizes(X1, {∃r.Self})

realizes(X1, {∃r.Self}) → realize(X1, X1, {r}) (30)

To make sure that the relations between ABox individuals
do not violate any axiom in T , we add a rule of the form
(31) for each r v s; a rule (32) for each A v ∀r.B; and a
rules (33) for each Disj(r, s):

realize(X1, X2, {r}) → realize(X1, X2, {s}) (31)

realize(X1, X2, R), r ∈ R,
realizes(X1, T), A ∈ T → realizes(X2, {B}) (32)

realize(X1, X2, R), {r, s} ⊆ R → (33)
Ensuring the satisfaction of the axioms A v≤ 1r.C is more
involved. To this aim, we axiomatize a congruence relation
equal between ABox individuals as follows:

for each a ∈ NI(K), → equal(a, a),

equal(X1, X2)→ equal(X2, X1),

equal(X1, X2), equal(X2, X3)→ equal(X1, X3),

realizes(X1, T1), realizes(X2, T2),
same(T1, T2)→ equal(X1, X2),

realizes(X1, T), equal(X1, X2)→ realizes(X2, T),

realize(X1, X2, R),equal(X1, X3)→ realize(X3, X2, R),

realize(X1, X2, R),equal(X2, X3)→ realize(X1, X3, R).

(34)

Now we can ensure the satisfaction of the number restric-
tions by adding, for each A v≤ 1r.C, rules of the form:

realizes(X1, T1), A ∈ T1,
realize(X1, X2, R1), r ∈ R1,
realize(X1, X3, R2), r ∈ R2,

realizes(X2, T2), C ∈ T2,
realizes(X3, T3), C ∈ T3 → equal(X2, X3),

(35)

realize(X1, T1), A ∈ T1,
realize(X1, X2, R1), r ∈ R1,

realized(T2), C ∈ T2, enf(T2, R2, T1), r̄ ∈ R2,
realizes(X2, {C}), same(T1, T1), inv(R2, R

′
2)→H,

(36)

realize(X1, T1), A ∈ T1,
realize(X1, X2, R1), r ∈ R1,

enf(T1, R2, T2), r ∈ R2

realizes(X2, {C}), C ∈ T2→H ′.

(37)

for H = realize(X1, X2, R
′
2) and H = realizes(X2, T2), and

for H ′ = realize(X1, X2, R1 ∪R2) and H ′ = realizes(X1, T2).
These ensure the satisfaction of atmost restrictions by

identifying ABox individuals (35) and merging enforced
types into ABox individuals if required (36 and 37).

This finishes the encoding of K into the DATALOGS pro-
gram PK. Now we prove that the reduction is correct.
Proposition 3. K is satisfiable iff PK has a model.

Proof. (Sketch) For the only if direction, we have to show
that from a model I of K we can construct an interpretation
I for PK that satisfies all the rules above. The construction
of I is straightforward and reflects the intuitive meaning of
predicates we have described. For example, impI contains
the pairs of types τ, τ ′ such that

⋂
A∈τ A

I ⊆
⋂
B∈τ ′ BI ,

while enf I contains the triples 〈τ, ρ, τ ′〉 such that for every
d realizing τ there is a d′ realizing τ ′ such that 〈d, d′〉 ∈⋂
r∈ρ r

I . The interpretation of realized contains all realized
types, i.e. the set of τ such that

⋂
A∈τ A

I 6= ∅. For the same
predicate, we simply put all pairs of types such that there is
a unique d ∈ ∆I that realizes simultaneously τ and τ ′, i.e.,
〈τ, τ ′〉 ∈ sameI iff

⋂
A∈τ A

I =
⋂
B∈τ ′ BI = {d} for some

d ∈ ∆I . A pair of individuals a, b occurring inK is in equalI

iff aI = bI , while 〈a, τ〉 ∈ realizesI iff τ is realized by aI ;
realizeI is analogous. Other auxiliary predicates are trivial.
It is easy to confirm the satisfaction of rules (1) to (37).

The if direction is more interesting, and it is proved by
showing that the least model of PK gives rise to a model I
ofK. The domain ∆I of I has a forest-like structure, and we
allow each element to be connected to the forest roots (apart
from its predecessor, its children and itself.) As roots of ∆I
we use sets of individuals (induced as equivalence classes of
the equal relation) and additional elements called pseudo-
nominals. Each pseudo-nominal satisfies a set of types that
are pairwise identified via the same predicate. To grow a tree
out of every root, we create new successors as demanded by
enf. Roughly we ignore triples in enf which are not maxi-
mal (w.r.t. second and third argument) and hence subsumed
by others. For each node d realizing some τ and each maxi-
mal 〈τ, ρ, τ ′〉 it enforces, we create a new successor, only if
the respective ρ and τ ′ are not already satisfied by taking the
predecessor of d or d itself; if τ ′ is in the same relation then
d is connected to a pseudo-nominal and no new successor

is created. With these strategies we obtain a model where
each element has sufficient neigbours to satisfy all axioms,
and no more neighbours than the number restrictions allow.
Note that the rules dealing with atmost restrictions enforce
the existence of the desired unique maximal enf triples. To
show that the constructed forest is a model, one must exam-
ine all the relevant axiom types from Table 1. A detailed
proof is given in the appendix.

Complexity of Reasoning
From the encoding of Horn-SHOIQ into DATALOGS and
Theorem 2, we obtain the following complexity results:
Theorem 4. The satisfiability problem for Horn-SHOIQ
and Horn-SROIQ KBs is in EXPTIME and 2-EXPTIME,
respectively (in the former case, we assume unary encoding
of numbers). If the TBox is fixed, i.e. when measuring data
complexity, the problem for both DLs is in PTIME.

Proof. Given a Horn-SHOIQ KB, the translation into
normal Horn-ALCHOIQDisj

Self is polynomial, and so is the
translation into DATALOGS that was given in the previous
section. For Horn-SROIQ the first step may result in
a single-exponential blowup, and the second step remains
polynomial. The respective EXPTIME and 2-EXPTIME up-
per bounds are then obtained using Theorem 2.

For the data complexity, observe that fixing the
TBox of a KB means fixing all the intensional rules
and the sort signature of its DATALOGS translation. Indeed,
each a :A in the ABox translates into facts realizes(a, {A})
and equal(a, a), while each (a, b) : r translates into
realize(a, b, {r}), equal(a, a) and equal(b, b)); these do not
alter the sort signature. Hence we obtain from Theorem 2
that satisfiability testing is feasible in polynomial time.

These bounds are tight. KB satisfiability in any DL al-
lowing for conjunction on the left hand side and quantified
universal restrictions on the right hand side of TBox axioms
is PTIME-hard in data complexity (Calvanese et al. 2006).
EXPTIME-hardness in combined complexity holds already
for Horn-SHIQ (Krötzsch, Rudolph, & Hitzler 2007), a
fragment of Horn-SHOIQ.

2-EXPTIME hardness of satisfiability of Horn-SROIQ
KBs can be shown by a reduction from the word problem for
a deterministic Turing machine with double-exponentially
bounded time. The construction, which closely follows
(Kazakov 2008), is in the appendix. Thus we obtain:
Theorem 5. Deciding the satisfiability of a Horn-SROIQ
knowledge base is 2-EXPTIME-hard.

Discussion and Conclusion
In this paper, we presented an encoding of Horn-SHOIQ
and Horn-SROIQ KBs into DATALOG, and obtained this
way optimal complexity bounds for the two DLs. The reduc-
tion is based on types and hence follows some of the ideas
already exploited for other FOL fragments (cf. (Grädel &
Otto 1999)).

A different encoding into DATALOG was developed
in (Hustadt, Motik, & Sattler 2004; 2005) for SHIQ and

Horn-SHIQ. There, the authors apply a resolution proce-
dure to obtain a DATALOG program that can be evaluated in
polynomial or nondeterministic polynomial time, depend-
ing on the presence of disjunction. Due to the EXPTIME-
hardness of these logics, it might take exponential time to
compute the DATALOG program itself. Contrarily, our trans-
lation is polynomial, but the resulting program might take
exponential time to evaluate.

Our approach is also related to the one in (Kazakov 2009)
for Horn-SHIQ, which works by explicating implicit in-
clusion axioms. We do similar inferences in the DATALOG
program: the imp and enf relations explicate dependencies
between types, which can be viewed as new TBox axioms.

Our translation is modular, and works on an axiom-by-
axiom basis. If the signature of the KB is fixed, updates
can be easily incorporated. If new assertions or axioms are
added to the KB, the least model of the new DATALOG pro-
gram can be built on top of the model of the old one.

Many issues remain for future work. For example, con-
junctive query answering in the two logics could be at-
tempted by exploiting the type representation of a canonical
model given by the least model of the DATALOG program.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and Patel-
Schneider, P. 2007. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press.
Baader, F. 2003. Terminological cycles in a description logic with
existential restrictions. In Proc. IJCAI’03, 325–330.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.; and
Rosati, R. 2006. Data complexity of query answering in descrip-
tion logics. In Proc. KR’06, 260–270.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.; and
Rosati, R. 2007. Tractable reasoning and efficient query answer-
ing in description logics: The DL-Lite family. J. Autom. Reason-
ing 39(3):385–429.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001. Com-
plexity and expressive power of logic programming. ACM Com-
puting Surveys 33(3):374–425.
Grädel, E., and Otto, M. 1999. On Logics with Two Variables. J.
Theor. Comput. Sci. 224(1-2):73–113.
Horrocks, I., and Sattler, U. 2005. A Tableaux Decision Proce-
dure for SHOIQ. In Proc. IJCAI’05, 448–453.
Horrocks, I.; Kutz, O.; and Sattler, U. 2006. The Even More
Irresistible SROIQ. In Proc. KR’06, 57–67. AAAI Press.
Hustadt, U.; Motik, B.; and Sattler, U. 2004. Reducing SHIQ-
Description Logic to Disjunctive Datalog Programs. In Proc.
KR’04, 152–162. AAAI Press.
Hustadt, U.; Motik, B.; and Sattler, U. 2005. Data complex-
ity of reasoning in very expressive description logics. In Proc.
IJCAI’05, 466–471. Professional Book Center.
Kazakov, Y., and Motik, B. 2008. A Resolution-based Decision
Procedure for SHOIQ. J. Autom. Reasoning 40(2-3):89–116.
Kazakov, Y. 2008. RIQ and SROIQ are Harder than
SHOIQ. In Proc. KR’08, 274–284. AAAI Press.
Kazakov, Y. 2009. Consequence-driven Reasoning For Horn-
SHIQ Ontologies. In Proc. IJCAI’09, 2040–2045.
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2007. Complexity
Boundaries for Horn Description Logics. In Proc. AAAI’07.

Rudolph, S.; Krötzsch, M.; and Hitzler, P. 2008. Terminological
reasoning in SHIQ with ordered binary decision diagrams. In
Proc. AAAI’08, 529–534. AAAI Press.
Tobies, S. 2000. The Complexity of Reasoning with Cardinality
Restrictions and Nominals in Expressive Description Logics. J.
Artif. Intell. Res. (JAIR) 12:199–217.

Appendix
From DATALOGS to DATALOG
Assume a DATALOGS program P with sort signature Σ(P).
To translate P into plain DATALOG, we need to eliminate
set positions and set variables from P . This can done by
employing a bit-vector representation of sets, i.e., for each
S ∈ Σ(P), each subset of S is represented as a vector of
|S| bits. For each S ∈ Σ(P) we assume an arbitrary but
fixed enumeration of its elements, and, with a slight abuse
of notation, write S(i) to denote the ith element in S.

The transformation is then defined in 3 steps:

1. (Elimination of ∪) For each S ∈ Σ(P), we use a new
ternary relation symbol US not occurring in P . In every rule
r ∈ P , we replace each term t1 ∪ t2 by a fresh variable X ,
and add to the body of r the atom US(t1, t2, X). In this way
P becomes ∪-free.

2. (Atom rewriting) For the ∪-free P we construct a plain
DATALOG program P ′. We additionally use two fresh con-
stants 0 and 1. P ′ is obtained from P by replacing each atom
R(t1, . . . , tn) in P byR′(tr(t1), . . . , tr(tn)), where tr(t) is
defined as follows:
(a) if t = X and X ∈ VC, i.e. X is a variable for individual

constants, then tr(t) = X ′;
(b) if t = X and X is a variable for the S-sort, then

tr(X) = 〈X ′S(1), . . . , X
′
S(m)〉, where m = |S|.

(c) if t = {c1, . . . , ck} is a ground term for the S-sort, then
tr(t) = 〈b1, . . . , bm〉, where m = |S| and for each 1 ≤
i ≤ m: (i) bi = 1 if S(i) ∈ t, and (ii) bi = 0, otherwise.

3. (Dealing US) We finally need to ensure that the relation
U′S which results from US behaves like the union predicate:
U′S(~X, ~Y , ~Z) must be true if ~Z encodes the union of the two
sets encoded in ~X and ~Y . This is achieved by adding to P ′
the following rules for each S ∈ Σ(P), where m = |S|:

max(0, 0, 0); max(1, 0, 1); max(0, 1, 1); max(1, 1, 1);
max(X1, Y1, Z1), . . . ,max(Xm, Ym, Zm)→U′S(~X, ~Y , ~Z).

It is easy to establish a correspondence between models of P
and P ′. We note that the resulting program is of polynomial
size in the size of P and Σ(P). Observe also that in case the
sort signature Σ(P) is fixed, adding new facts does not re-
quire extending predicate arities, and that a fresh ground fact
for P translates into a fresh new fact for P ′. This justifies
the claims in Theorem 2.

Proof of Proposition 3, if direction
Recall that K is a normal Horn-ALCHOIQDisj

Self knowledge
base, and PK denotes its translation into DATALOGS.
Definition 3. Let I be the least model of PK. We define the
interpretation I = (∆I , ·I) induced by I as follows.

Recall that equalI is an equivalence relation over the indi-
viduals in NI(K). We define the set R of roots as the set of
all elements of the form cτ for which:

• c is either an equivalence class of equalI, or the symbol �;
• if c 6= �, then τ is the⊆-minimal concept type containing

each τ ′ such that 〈a, τ ′〉 ∈ realizesI for some a ∈ c; and
• if c = � then (i) 〈τ, τ〉 ∈ sameI, (ii) there is no τ ′ ⊃ τ

with 〈τ ′, τ ′〉 ∈ sameI, and (iii) there is no a ∈ NI(K) with
〈a, τ〉 ∈ realizesI.

We define the set O ⊆ R of pseudo-nominals as {cτ ∈ R |
〈τ, τ〉 ∈ sameI}. Given a concept type τ , the set ES(τ)
of its enforced successors contains the pairs 〈ρ1, τ1〉 ∈
2C(K) × 2NR(K) for which 〈τ, ρ1, τ1〉 ∈ enf I and there is no
〈τ, ρ2, τ2〉 ∈ enf I with ρ1 ∪ τ1 ⊂ ρ2 ∪ τ2.

In the following, we will work on words d of the shape
d = cτ1ρ1τ2 . . . ρn−1τn ∈ R × (2NR(K) × 2C(K))∗, and we
use [[d]] to denote the last element τn of d.

The domain ∆I is the smallest set of words such that R ⊆
∆I , and if d ∈ ∆I and 〈ρ, τ〉 ∈ ES([[d]]) then dρτ ∈ ∆I
unless one of the following is the case:

E1 there is a cτ ∈ O,
E2 {∃r̂.Self | r ∈ ρ} ∪ τ ⊆ [[d]],
E3 d = d′ρ′τ ′ with {r̄ | r ∈ ρ} ⊆ ρ′ and τ ⊆ [[d′]],
E4 d = cτ ′ ∈ O and there is a τ ′′ ∈ realizedI with
〈ρ′, τ ′〉 ∈ ES(τ ′′) such that {r̄ | r ∈ ρ} ⊆ ρ′ and τ ⊆ τ ′′.

E5 d = cτ ′ ∈ R, c 6= �, and there are 〈a, b, ρ′〉 ∈ realizeI

and c′τ ′′ ∈ R with a ∈ c, b ∈ c′, ρ ⊆ ρ′ and τ ⊆ τ ′′.
We define the interpretation function ·I as follows:

• for each a ∈ NI(K), aI = cτ for the cτ ∈ R with a ∈ c;
• for each A ∈ NC occurring in K, d ∈ AI iff A ∈ [[d]];
• for each r ∈ NR(K), rI is the set of pairs that contains:

R1 〈cτ, c′τ ′〉 whenever cτ, c′τ ′ ∈ ∆I and there are indi-
viduals a ∈ c and b ∈ c′ with 〈a, b, {r}〉 ∈ realizeI,

R2 〈d, dρτ〉 whenever d, dρτ ∈ ∆I and r ∈ ρ,
R3 〈dρτ, d〉 whenever d, dρτ ∈ ∆I and r̄ ∈ ρ,
R4 〈d, d〉 whenever ∃r.Self ∈ [[d]],
R5 〈d, d′〉 if d′∈O and 〈ρ, [[d′]]〉∈ES([[d]]) for a ρ 3 r,
R6 〈d′, d〉 if d′∈O and 〈ρ, [[d′]]〉∈ES([[d]]) for a ρ3Inv(r).

To show I |= K, we first prove some auxiliary lemmas:

Lemma 6. τ ∈ realizedI iff τ ⊆ [[d]] for some d ∈ ∆I .

Proof. The “if” part can be proven inductively via the con-
struction of ∆I . For the base case, consider d = cτ . If
c 6= � then 〈a, τ ′〉 ∈ realizesI for some a ∈ c and Rule 25.3
ensure τ ∈ realizedI. If c = �, then 〈τ, τ〉 ∈ sameI and
Rule 20.2 ensures τ ∈ realizedI. For the induction step, con-
sider a d = d′ρ′τ ′. By definition 〈[[d′]], ρ′, τ ′〉 ∈ enf I. As
[[d′]] ∈ realizedI by induction hypothesis, Rule 17.1 implies
τ ′ ∈ realizedI. The “only if” part then follows directly from
the fact that I is the least model of PK.

Lemma 7. CI = {d ∈ ∆I | C ∈ [[d]]} for eachC ∈ C(K).

Proof. If C is a concept name in NC, the claim holds imme-
diately by definition of CI . For C = {a} with a ∈ NI(T)
it follows from the Rules 24 and 34.4. For C = ∃r.Self ,
C ∈ [[d]] implies d ∈ CI by the definition of rI and we only

need to show ⊆. We consider an arbitrary d ∈ (∃r.Self)I .
As 〈d, d〉 ∈ rI , we have case R1, R4, R5 or R6 in the defini-
tion of rI . If R1, then d is of the form cτ and {∃r.Self} ∈ τ
is ensured by Rules 30 and 34. Case R4 is trivial. For R5
and R6, d = d′ ∈ O implies 〈[[d]], [[d]]〉 ∈ sameI and hence
Rule 21.1 ensures {∃r.Self} ∈ [[d]].

Lemma 8. For every concept type τ with 〈τ, τ〉 ∈ sameI

there is exactly one d ∈ ∆I that realizes τ .

Proof. By definition of O it is obvious that there is at least
one such d. Moreover, by definition and via E1, we know
that every such d must be of the form cτ ′. Assume d1 =
c1τ1 and d2 = c2τ2 with τ ⊆ τ1 and τ ⊆ τ2. Now, as I is
the least model, there must be a derivation justifying 〈τ, τ〉 ∈
sameI. An inspection of the rules for same reveals that this
derivation directly gives rise to one for 〈τ1, τ2〉 ∈ sameI.
Hence τ1 ∪ τ2 ∈ realizedI by Rule 20, and we can similarly
see that there is a derivation of 〈τ1 ∪ τ2, τ1 ∪ τ2〉 ∈ sameI.

Now suppose c1 = �, which by definition holds iff c2 = �
as well. The definition requires τ1 and τ2 to be maximal,
so we have τ1 = τ2 = τ1 ∪ τ2, which implies d1 = d2.
Otherwise, if c1 6= � and c2 6= �, let a ∈ c1 and b ∈
c2. Then by Rule 25,〈a, τ1〉 ∈ realizesI as well as 〈b, τ2〉 ∈
realizesI. As we already found 〈τ1, τ2〉 ∈ sameI, we can use
Rule 34.4 to obtain 〈a, b〉 ∈ equalI and hence by definition
c1 = c2. This entails τ1 = τ2 and thus d1 = d2 as well.

Lemma 9. Let d ∈ ∆I , and let τ1 and τ2 be concept types.
If τ1 ⊆ [[d]] and 〈τ1, τ2〉 ∈ impI, then τ2 ⊆ [[d]].

Proof. We distinguish three cases: For d = d′ρτ ′, we can
use Rule 4 to deduce τ2 ∈ τ ′. For d = cτ with c 6= �, τ2 ⊆
τ is ensured by Rule 25.1. It remains to consider d = �τ .
Note that τ ∈ realizedI (by Lemma 6) and 〈τ1, τ2〉 ∈ impI

together with Rule 17.2 yield τ ∪ τ2 ∈ realizedI. Yet from
Lemma 8 it follows that �τ is the only element realizing τ ,
which together with Lemma 6 entails τ2 ⊆ τ .

We now show the if direction of Proposition 3.

Lemma 10. If the least model of PK induces I, then I |= K.

Proof. We examine every axiom of K according to its type
from Table 1 and show that it is satisfied in I.
(i),(ii’)I r v s ∈ T . Let 〈d, d′〉 ∈ rI . We distinguish cases
according to the reasons for which the pair 〈d, d′〉 is in rI :

R1 d = cτ ,d′ = c′τ ′ and 〈a, b, {r}〉 ∈ realizeI with a ∈ c
and b ∈ c′. Then Rule 31 ensures 〈a, b, {s}〉 ∈ realizeI as
well and therefore 〈d, d′〉 ∈ sI .

R2 〈d, dρτ〉 with r ∈ ρ. We have 〈[[d]], ρ, τ〉 ∈ enf I by con-
struction. We obtain 〈[[d]], ρ ∪ {s}, τ〉 ∈ enf I by Rule 5.1.
Via maximality we have s ∈ ρ, hence 〈d, d′〉 ∈ sI .

R3 We argue the same way, using Rule 5.2 instead of 5.1.
R4 d = d′ with ∃r.Self ∈ [[d]]. Then, by Rule 13, and

Lemma 9 we obtain ∃s.Self ∈ [[d]].
R5 and R6 are analog to Cases R2 and R3.

(vi)I Disj(r, s) ∈ T . Assume towards a contradiction that
〈d, d′〉 ∈ rI and 〈d, d′〉 ∈ sI . Again we examine all possi-
ble cases in which the pair is in rI :

R1 d= cτ , d′= c′τ ′. We consider all cases with 〈a, b, {r}〉
∈ realizeI and a ∈ c and b ∈ c′. All further combinations
are subsumed by these cases or follow by symmetry. Now
we examine the cases which cause 〈d, d′〉 ∈ sI :
By R1. 〈a′, b′, {r}〉 ∈ realizeI with a′ ∈ c and b′ ∈ c′
〈a′, b′, {s}〉 ∈ realizeI. By construction of c and c′, we
obtain 〈a, a′〉 ∈ equalI and 〈b, b′〉 ∈ equalI, hence by
Rules 34, we have 〈a, b, {s}〉 ∈ realizeI and then, by
Rule 28 〈a, b, {r, s}〉 ∈ realizeI. This is a contradiction
by Rule 33.

By R4. d = d′ with ∃s.Self ∈ [[d]]. Then, by con-
struction, we have 〈a, b〉 ∈ equalI and by Rules 34
〈a, a, {r}〉 ∈ realizeI. On the other hand, we get
〈a, a, {s}〉 ∈ realizeI by Rule 30. Then Rule 28 ensures
〈a, a, {r, s}〉 ∈ realizeI, which contradicts Rule 33.

By R5. d′ ∈ O and 〈ρ, [[d′]]〉 ∈ ES([[d]]) for some ρ
with s ∈ ρ. Then Rule 29 entails 〈a, b, ρ〉 ∈ realizeI,
such that we can apply Rule 28 to get 〈a, b, ρ ∪ {s}〉 ∈
realizeI. This contradicts Rule 33.

By R6. d ∈ O and 〈ρ, [[d]]〉 ∈ ES([[d′]]) for some ρ with
s̄ ∈ ρ Then Rule 29 entails 〈b, a, ρ〉 ∈ realizeI, hence
we get 〈a, b, {r̄′ | r′ ∈ ρ}〉 ∈ realizeI by Rule 27. Now,
Rule 28 yields 〈a, b, {r̄′ | r′ ∈ ρ} ∪ {s}〉 ∈ realizeI.
Again, this contradicts Rule 33.

R2 d′ = dρτ with {r, s} ∈ ρ Then, by construction, we
have 〈[[d]], ρ, τ〉 ∈ enf I and can apply Rule 6.1 to obtain
〈[[d]], {⊥}〉 ∈ impI and therefore (noting Lemma 6) by
Rules 17 {⊥} ∈ realizedI. This contradicts Rule 18.

R3 d = d′ρτ with {r̄, s̄} ∈ ρ. 〈[[d′]], ρ, τ〉 ∈ enf I by con-
struction. 〈[[d′]], {⊥}〉 ∈ impI by Rule 6.2. By Lemma 6
and Rules 17 {⊥} ∈ realizedI, contradicting Rule 18.

R4 d = d′ with {∃r.Self,∃s.Self} ⊆ [[d]]. Then, by
Rule 12, we obtain 〈[[d]], {⊥}〉 ∈ impI whence (noting
Lemma 6) by Rules 17 {⊥} ∈ realizedI. Once more, this
contradicts Rule 18.

R5 and R6 are analog to Cases R2 and R3.
(vii)I A u B v C ∈ T . By Rules 1 and 2, we obtain
〈τ ∪ {A,B}, τ ∪ {A,B,C}〉 ∈ impI for every τ ∈ C(K).
Given a d ∈ AI ∩BI we find by Lemma 7 A,B ∈ [[d]] and
by Lemma 9 concludeC ∈ [[d]]. We finally invoke Lemma 7
to conclude d ∈ CI . In the following, we will tacitly pre-
sume Lemma 7 and directly argue via the value of [[·]].
(viii)I A v ∀r.B ∈ T . Suppose d, d′ ∈ ∆I with d ∈ AI
and 〈d, d′〉 ∈ rI . We consider the causes for 〈d, d′〉 ∈ rI :
R1 d = cτ, d′ = c′τ ′ with 〈a, b, {r}〉 ∈ realizeI with a ∈ c

and b ∈ c′. Then we have 〈a, {A}〉 ∈ realizesI, thus
Rule 32 ensures 〈b, {B}〉 ∈ realizesI and thus bI ∈ BI .

R2 d′ = dρτ and r ∈ ρ. By construction of ∆I , we have
〈[[d]], ρ, τ〉 ∈ enf I. Rule 7.1 yields 〈[[d]], ρ, τ ∪ {B}〉 ∈
enf I. Due to 〈[[d]], ρ, τ〉 being inclusion-maximal w.r.t. ρ
and τ , we get B ∈ τ and d′ ∈ BI .

R3 d = d′ρτ and Inv(r) ∈ ρ. Again, by construction of ∆I ,
we have 〈[[d′]], ρ, τ〉 ∈ enf I. From A ∈ τ and Inv(r) ∈ ρ,
we can use Rule 7.2 to infer 〈[[d′]], {B}〉 ∈ impI and then
apply Lemma 9 to obtain B ∈ [[d′]].

R4 d = d′ and ∃r.Self ∈ [[d]]. Then applying Rule 14 fol-
lowed by Lemma 9 establishes B ∈ [[d]].

R5 and R6 are analog to Cases R2 and R3.

(ix)I A v ∃r.B ∈ T . Consider a d ∈ AI . By Lemma 7
we have A ∈ [[d]]. By Rule 3, we obtain 〈{A}, {r}, {B}〉 ∈
enf I. Then there is a 〈ρ, τ〉 ∈ ES([[d]]) with r ∈ ρ and
B ∈ τ . By definition of ∆I , if none of the exceptional
cases applies, we have dρτ ∈ ∆I , and by R2 it follows that
〈d, dρτ〉 ∈ rI and B ∈ τ = [[dρτ]]. Now, we go through
the exceptional cases, one by one:

E1 If there is a cτ ∈ O, we get 〈d, cτ〉 ∈ rI by R5, more-
over B ∈ [[cτ]].

E2 If {∃r.Self | r ∈ ρ}∪ τ ⊆ [[d]], then by R4 also 〈d, d〉 ∈
rI and B ∈ τ ⊆ [[d]].

E3 If d = d′ρ′τ ′ with {r̄ | r ∈ ρ} ⊆ ρ′ and τ ⊆ [[d′]], we
have 〈d, d′〉 ∈ rI and B ∈ τ ⊆ [[d′]]

E4 d = cτ ′ ∈ O and there is a τ ′′ ∈ realizedI with
〈ρ′, τ ′〉 ∈ ES(τ ′′) such that {Inv(r) | r ∈ ρ} ⊆ ρ′ and
τ ⊆ τ ′′. From τ ′′ ∈ realizedI and Lemma 6, we obtain
that there must be a d′ ∈ ∆I with [[d′]] = τ ′′. Then, by
R6, we get 〈d, d′〉 ∈ rI and B ∈ τ ⊆ τ ′′ ⊆ [[d′]].

E5 d = cτ ′ ∈ R with c 6= � and there are 〈a, b, ρ′〉 ∈
realizeI and c′τ ′′ ∈ R with a ∈ c, b ∈ c′, ρ ⊆ ρ′ and
τ ⊆ τ ′′. Then, by R1, we know 〈d, c′τ ′′〉 ∈ rI and B ∈
τ ⊆ τ ′′ = [[c′τ ′′]].

(xi)I A v 61 r.C ∈ T . Suppose there are d, d1, d2 with
A ∈ [[d]], 〈d, di〉∈rI for i∈{1, 2}, C∈[[d1]] and C∈[[d2]].
We examine all combinations of cases, and show d1 = d2

for all those that can result in the two pairs being in rI :

R1 and R1: d = cτ ,d1 = c1τ1,d2 = c2τ2, 〈a, b, {r}〉 ∈
realizeI with a ∈ c and b ∈ c1, 〈a′, b′, {r}〉 ∈ realizeI

with a′ ∈ c and b′ ∈ c2. By construction of c, we obtain
〈a, a′〉 ∈ equalI, hence by Rule 34, we have 〈a, b′, {r}〉 ∈
realizeI and then, by Rule 35, get 〈b, b′〉 ∈ equalI. Then,
by construction, c1 = c2 and therefore d1 = d2.

R1 and R2: d = cτ ,d1 = c1τ1, 〈a, b, {r}〉 ∈ realizeI with
a ∈ c and b ∈ c1, d2 = dρ2τ2 with r ∈ ρ2. Since
〈[[d]], ρ2, τ2〉 ∈ enf I, we can apply Rule 37 to obtain
〈b, τ2〉 ∈ realizesI and 〈a, b, ρ2〉 ∈ realizeI. But then
dρ2τ2 cannot occur in ∆I due to E5.

R1 and R3: This case cannot occur, as d can not be of both
forms d = cτ and d = d2ρ2τ2.

R1 and R4: d = cτ ,d1 = c1τ1, 〈a, b, {r}〉 ∈ realizeI with
a ∈ c and b ∈ c1, d2 = d, ∃r.Self ∈ [[d]]. By Rule 30, we
obtain 〈a, a, {r}〉 ∈ realizeI and consequently by Rule 35
〈a, b〉 ∈ equalI, thus c1 = c and hence d1 = d = d2.

R1 and R5: d = cτ ,d1 = c1τ1, 〈a, b, {r}〉 ∈ realizeI with
a ∈ c and b ∈ c1, d2 ∈ O and 〈ρ, [[d2]]〉 ∈ ES([[d]]) for
some ρ with r ∈ ρ. Since 〈[[d]], ρ2, [[d2]]〉 ∈ enf I, we can
apply Rule 37 to obtain 〈b, [[d2]]〉 ∈ realizesI. Then due to
d2 ∈ O and Lemma 8, we obtain d1 = d2.

R1 and R6: d = cτ , d1 = c1τ1, 〈a, b, {r}〉 ∈ realizeI with
a ∈ c and b ∈ c1, d ∈ O and 〈ρ, [[d]]〉 ∈ ES([[d2]])
for some ρ with r̄ ∈ ρ. Due to 〈[[d2]], ρ, [[d]]〉 ∈ enf I,
and 〈[[d]], [[d]]〉 ∈ sameI, we can apply Rule 36 to ob-
tain 〈b, [[d2]]〉 ∈ realizesI as well as Rule 22 to obtain
〈[[d2]], [[d2]]〉 ∈ sameI. This ensures d2 = c2τ2 with
b ∈ c2 and hence d1 = d2.

R2 and R2: d1 = dρ1τ1, r ∈ ρ1, d2 = dρ2τ2, r ∈ ρ2.
Then we have 〈[[d]], ρ1, τ1〉 ∈ enf I and 〈[[d]], ρ2, τ2〉 ∈

enf I, thus we get by Rule 10 together with 4 also
〈[[d]], ρ1 ∪ ρ2, τ1 ∪ τ2〉 ∈ enf I. Hence, again by maximal-
ity, we know that ρ1 = ρ2 and τ1 = τ2 and thus d1 = d2.

R2 and R3: d1 = dρ1τ1, r ∈ ρ1, d = d2ρ2τ2, r̄ ∈ ρ2.
Then, 〈τ2, ρ1, τ1〉 ∈ enf I and 〈[[d2]], ρ2, τ2〉 ∈ enf I as
well. By Rule , we then obtain 〈[[d2]], τ1〉 ∈ impI

and 〈[[d2]], ρ2 ∪ {r̄ | r ∈ ρ1}, τ2〉 ∈ enf I and therefore
via Rule 4 〈[[d2]], ρ2 ∪ {r̄ | r ∈ ρ1}, [[d2]] ∪ τ2〉 ∈ enf I,
which (by construction-maximality) entails {r̄ | r ∈
ρ1} ⊆ ρ2 and τ1 ⊆ [[d2]]. Then dρ1τ1 cannot be in ∆I as
E3 would apply. Therefore this case cannot occur.

R2 and R4: d1 = dρ1τ1, r ∈ ρ1, d2 = d, ∃r.Self ∈ [[d]].
Then, by Rules 15.1, 15.3, and 4, we know that {∃r̂.Self |
r ∈ ρ} ∪ τ ⊆ [[d]]. But then dρ1τ1 cannot be in ∆I as E2
would apply. Thus this case cannot occur either.

R2 and R5: d1 = dρ1τ1, r ∈ ρ1, d2 ∈ O and 〈ρ2, [[d2]]〉 ∈
ES([[d]]) for some ρ2 with r ∈ ρ2. Then, 〈[[d]], ρ1, τ1〉 ∈
enf I and 〈[[d]], ρ2, τ2〉 ∈ enf I as well. By Rules 10 and
4, we obtain 〈[[d]], ρ1 ∪ ρ2, τ1 ∪ τ2〉 ∈ enf I and thus (by
maximality) τ1 = τ2. But then dρ1τ1 cannot be in ∆I as
E1 would apply. Hence, this case cannot occur.

R2 and R6: d1 = dρ1τ1, r ∈ ρ1, d ∈ O and 〈ρ2, [[d]]〉 ∈
ES([[d2]]) for some ρ2 with r̄ ∈ ρ2. Then, 〈[[d]], ρ1, τ1〉 ∈
enf I and 〈[[d2]], ρ2, [[d]]〉 ∈ enf I as well. Then, we get a
contradiction analog to the case R2 and R3.

R3 and R3: d = d1ρ1τ1, r̄ ∈ ρ1. d = d2ρ2τ2, r̄ ∈ ρ2. By
construction of ∆I , we directly obtain d1 = d2.

R3 and R4: d = d1ρ1τ1, r̄ ∈ ρ1, d2 = d, ∃r.Self ∈ [[d]].
From these, we obtain by Rule 11 〈τ1, {r}, τ1〉 ∈ enf I. As
additionally 〈[[d1]], ρ1, τ1〉 ∈ enf I, we can use Rule 10 to
derive 〈[[d1]], τ1〉 ∈ impI. But then, with Rules 4 and by
maximality τ1 ∈ [[d1]], moreover, by Rule 15.2 follows
{∃r̂.Self | r ∈ ρ1} ⊆ [[d1]]. But then, d1ρ1τ1 cannot be
in ∆I due to E2. So this case cannot occur.

R3 and R5: d = d1ρ1τ1, r̄ ∈ ρ1, d2 ∈ O and 〈ρ2, [[d2]]〉 ∈
ES([[d]]) for some ρ2 with r ∈ ρ2. Then, 〈[[d1]], ρ1, τ1〉 ∈
enf I and 〈τ1, ρ2, [[d2]]〉 ∈ enf I as well. By Rule , we obtain
〈[[d1]], [[d2]]〉 ∈ impI and hence via Lemma 9 and maxi-
mality [[d2]] = [[d1]]. As d2 ∈ O, we know by Lemma 8
that [[d2]] can be realized only once, thus d1 = d2.

R3 and R6: d = d1ρ1τ1 and d ∈ O cannot both be true.
R4 and R4: This case is obvious, as d = d1 = d2.
R4 and R5: d1 = d, ∃r.Self ∈ [[d]]. d2 ∈ O and
〈ρ2, [[d2]]〉 ∈ ES([[d]]) for some ρ2 with r ∈ ρ2. Since
〈[[d]], ρ2, [[d2]]〉 ∈ enf I, we can apply Rule 15.1 to obtain
〈[[d]], [[d2]]〉 ∈ impI. Then, by Lemma 9 [[d2]] ⊆ [[d]] and
as d2 ∈ O, we can use Lemma 8 to obtain d1 = d = d2.

R4 and R6: d1 = d, ∃r.Self ∈ [[d]], d ∈ O and 〈ρ2, [[d]]〉 ∈
ES([[d2]]) for some ρ2 with r̄ ∈ ρ2. From these, we
obtain by Rule 11 〈[[d]], {r}, [[d]]〉 ∈ enf I. As addition-
ally 〈[[d2]], ρ2, [[d]]〉 ∈ enf I, Rule 10 yields 〈[[d1]], [[d]]〉 ∈
impI. With Rules 4 and by maximality [[d]] ⊆ [[d2]]. From
d ∈ O and Lemma 8 follows d = d1 = d2

R5 and R5: d1 ∈ O and 〈ρ1, [[d1]]〉 ∈ ES([[d]]) for some ρ1

with r ∈ ρ1, d2 ∈ O and 〈ρ2, [[d2]]〉 ∈ ES([[d]]) for some
ρ2 with r ∈ ρ2. As we have 〈[[d]], ρ1, [[d1]]〉 ∈ enf I as
well as 〈[[d]], ρ2, [[d2]]〉 ∈ enf I, we get by Rules .1 and .2
together with 4 also 〈[[d]], ρ1 ∪ ρ2, [[d1]] ∪ [[d2]]〉 ∈ enf I.
Hence, by maximality, we know that [[d1]] = [[d2]] and

therefore, via Lemma 8, d1 = d2.
R5 and R6: d1 ∈ O and 〈ρ1, [[d1]]〉 ∈ ES([[d]]) for some ρ1

with r ∈ ρ1, d ∈ O and 〈ρ2, [[d]]〉 ∈ ES([[d2]]) for some
ρ2 with r̄ ∈ ρ2. As in the case R5 and R6, we obtain
〈[[d2]], [[d1]]〉 ∈ impI, hence [[d1]] ⊆ [[d2]], therefore (as
d1 ∈ O and by Lemma 8) also d1 = d2.

R6 and R6: d ∈ O and 〈ρ1, [[d]]〉 ∈ ES([[d1]]) for some
ρ1 with r̄ ∈ ρ1, 〈ρ2, [[d]]〉 ∈ ES([[d2]]) for some ρ2

with r̄ ∈ ρ2. Then we have 〈[[d1]], ρ1, [[d]]〉 ∈ enf I

and 〈[[d2]], ρ2, [[d]]〉 ∈ enf I. Moreover, d ∈ O implies
〈[[d]], [[d]]〉 ∈ sameI such that we can apply Rule 22
to obtain 〈[[d1]], [[d2]]〉 ∈ sameI, whence via Rule 20,
Lemma 9, and Lemma 8, we can conclude d1 = d2.

(xiii)I a:A ∈ A. By Rule 23, 〈a, {A}〉 ∈ realizesI, and by
the definition of I, we obtain aI ∈ AI as desired.
(xiv)I (a, b):r ∈ A. By Rule 26 we have 〈a, b, {r}〉 ∈
realizeI. Then the definition of I (in particular R1) yields
〈aI , bI〉 ∈ rI .

Horn-SROIQ is 2-EXPTIME hard
We show 2-EXPTIME hardness standard reasoning in
Horn-SROIQ by reducing the word problem of a deter-
ministic Turing machine that halts within double exponen-
tial time to the unsatisfiability of a Horn-SROIQ KB.

Axiomatizing a Double Exponential Grid First we show
how to axiomatize a finite grid of size 22n× 22n

for a
given n. This is done similarly as in (Kazakov 2008),
but by introducing additional concept names to avoid using
negated concepts, we obtain an axiomatization which is in
Horn-SROIQ.

We first use the well-known binary integer counting tech-
nique to axiomatize r-chains of length 2n.

The ith low- and the ith high-bit cannot be set for the
same element; every element of the r-chain having some
low-bits set (and hence not being the 2nth one) has an r-
successor. The first bit is always flipped when going to the
next element in the r-chain. Initial elements (those in class
Z) have all low-bits set; we let E recognize the end of the
r-chain (i.e. the individual with all high-bits set).

Li uHi v⊥ Li v ∃r.> 1 ≤ i ≤ n
L1v∀r.H1 H1v∀r.L1 Zv

d
i≤n Li

d
i≤nHivE

For every bit position k > 1, we introduce a marker Sk
to indicate the bit with the largest position that should be
flipped in the next element of the r-chain.

Sk v ∀r.Lm Sk u Sm v⊥ (1<m<k≤n)
Sk u Lm v ∀r.Lm Sk uHm v ∀r.Hm (1<k<m≤n)
Lk u

d
i<kHi v Sk Sk v ∀r.Hk (1 < k ≤ n)

Next, the 2n-r-chains are used to encode bit counters with
2n positions. Those are ‘concatenated’ in ascending order
to obtain a chain of double exponential length. We use the
nominal o as origin of this chain and Lx, Hx as the new
counter’s low- and high-bit, respectively. The origin starts a
2n-r-chain; low and high bit are mutually exclusive:

{o} v Z Hx u Lx v⊥

The Zv-concept is set for o and propagated through the 2n-
r-chain setting all low-bits along the way.

{o} v Zv Zv v ∀r.Zv Zv v Lx
We use the following technique to detect an 2n-r-chain with
all high-bits set: we initializeEv to hold in every 2n-r-chain
origin and propagate it along the chain as long as all high-
bits on the way are set. As soon as we encounter a low-bit,
we propagate Nv instead.
Z vEv Ev uHx v ∀r.Ev Lx v ∀r.Nv Ev uNv v⊥
Now, if we arrive at the end of a 2n-length counter with not
all high bits set (detected by the fact thatNv or Lx hold), we
establish a v-link to an individual that starts a new 2n-length
counter.

E uNv v ∃vZ E u Lx v ∃vZ
Both r and v are made subroles of v0 and we let roles
v1, . . . , vn span v0-chains of length 21, . . . , 2n, respectively.
r v v0 v v v0 vi−1 ◦ vi−1 v vi (1 < i ≤ n)

This establishes vn-links between corresponding positions
of two subsequent 2n-length counters which then can be
used to implement the step-wise increment.We use auxiliary
concepts Fx and Ux to indicate whether the bit should be
flipped in the subsequent counter.

The first bit of a counter is always flipped. If a high-bit
is to be flipped then the bit on the next position has to be
flipped as well. In case of a low bit, the next position bit (and
all those on subsequent positions) will remain unflipped.
Z v Fx Hx u Fx v ∀r.Fx Lx v ∀r.Ux Ux v ∀r.Ux

Next we implement the flipping mechanism.
Hx u Fx v ∀vn.Lx Lx u Fx v ∀vn.Hx

Hx u Ux v ∀vn.Hx Lx u Ux v ∀vn.Lx
For establishing a grid, we first duplicate the axioms to cre-
ate an independent counter (progressing along the h-role)
for the y-direction of the grid. Thereby we reuse the 2n-r-
chains to carry the bit representations of the y coordinate.

HyuLy v⊥ {o} v Zh Zh v ∀r.Zh Zh v Ly
Z v Eh EhuHy v ∀r.Eh Ly v ∀r.Nh EhuNh v⊥

EuNh v ∃h.Z EuLy v ∃h.Z
r v h0 hv h0 hi−1 ◦ hi−1 v hi (1 < i ≤ n)

Z v Fy HyuFy v ∀r.Fy Ly v ∀r.Uy Uy v ∀r.Uy
HyuFy v ∀hn.Ly LyuFy v ∀hn.Hy

HyuUy v ∀hn.Hy LyuUy v ∀hn.Ly
Now we make sure that x-counters don’t change along hn
and y-counters don’t change along vn:
Hxv∀hn.Hx Lxv∀hn.Lx Hyv∀vn.Hy Lyv∀vn.Ly
So far, the axioms essentially enforce a binary tree of dou-
ble exponential depth, the leaves of which all have the same
x-and y-coordinates. We now use an ‘end’ nominal to tie
together all those leaves (based on their coordinates).

E u Ev uHx u Eh uHy v {e}
All coordinate-equal individuals are forced to be identified
by declaring the roles r, v and h inverse functional.
>v 61 r−.> >v 61 v−.> >v 61h−.>

This finally enforces every model of the described knowl-
edge base to contain a 22n× 22n

grid w.r.t. the vertical role
vn and the horizontal role hn.

Encoding a Deterministic Turing Machine A (determin-
istic) Turing machine (TM) M is a tuple (Q,Σ, δ, q0, Qf)
where Q is a finite set of states, Σ is a finite alphabet that
includes a blank symbol �, δ : Q × Σ → Q × Σ × {l, r}
is the transition function, q0 ∈ Q is the initial state, and
Qf ⊆ Q is the set of final states. A configuration ofM is a
word α ∈ Σ∗QΣ∗. A configuration α′ is the successor of a
configuration α if one of the following holds:

1. α = wlqσσrwr, α′ = wlσ
′q′σrwr, δ(q, σ) = (q′, σ′, r),

2. α = wlqσ, α′ = wlσ
′q′�, δ(q, σ) = (q′, σ′, r), or

3. α = wlσlqσwr, α′ = wlq
′σlσ

′wr, δ(q, σ) = (q′, σ′, l),

where q ∈ Q, σ, σ′, σl, σr ∈ Σ, and wl, wr ∈ Σ∗.
Given a Turing machine M and a word w ∈ Σ∗, the

word problem is to decide whether M accepts w, that is,
whether there exists a sequence of successor configurations
α0, . . . , αm such that α0 = q0w and αm = w1qfw2 for
some qf ∈ Qf .

For showing a 2-EXPTIME lower bound, we assume that
there exists a polynomial p such that for every w, m is
bounded by 22p(k)

, where k = |Q| + |w|. Note that we only
need to represent configurations α with |α| < 22p(k)

, as no
larger configurations can occur during a run of length 22p(k)

.
We use a grid of size 22p(k)× 22p(k)

, axiomatized as above, to
represent the run ofM onw. Each row along the h-axis rep-
resents a configuration at a time instant, and configurations
evolve along the v-axis.

We introduce a concept name Aσ for every σ ∈ Σ ∪ {�}
to indicate what symbol is written on a specific tape position.
Moreover, we introduce concept names Hq for all q ∈ Q to
indicate that the head of the Turing machine is at a specific
position in state q. The concept names Hr and Hl are used
to indicate the absence of the head at a specific position. All
Aσ have to be disjoint, likewise the head status concepts.

Aσ uAσ′ v⊥ σ 6= σ′ Hq uHq′ v⊥ q 6= q′

Hr uHq v⊥ Hl uHq v⊥

Let w = σ0 . . . σl. We introduce concept names I0, . . . Il+1

to realize the initial tape content.

{o} v I0 uHq0 Ij vAσj
u ∀hn.Ij+1 (0 ≤ j ≤ l)

Ij v uHr for 1 ≤ j ≤ l
Il+1 vA� Il+1 v ∀hn.Il+1

Then we implement the way a configuration determines its
successor configuration. The following axioms have to be
added for all q ∈ Q and σ ∈ Σ:

Hq uAσ v ∀vn.Aσ′ u ∀hn.Hq′ if δ(q, σ) = (q′, σ′, r)
Hq uAσ v ∀vn.Aσ′ u ∀h−n .Hq′ if δ(q, σ) = (q′, σ′, l)

Hr uAσ v ∀vn.Aσ Hl uAσ v ∀vn.Aσ
Hq v ∀hn.Hr u ∀h−n .Hl Hr v ∀hn.Hr Hl v ∀h−n .Hl

As every model represents the deterministic run ofM with
input w, ifM accepts w, then AIqf

must be nonempty for at
least one qf ∈ Qf . By adding Aqf

v ⊥ for all qf ∈ Qf ,
we obtain a knowledge base that is unsatisfiable iff M is
accepts w. We remark that the construction is polynomial,
and that all axioms are in Horn-SROIQ.

