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Abstract. It is widely known that closure operators on finite sets can be rep-
resented by sets of implications (also known as inclusion dependencies) as well
as by formal contexts. In this paper we survey known results and present new
findings concerning time and space requirements of diverse tasks for managing
closure operators, given in contextual, implicational, or black-box representa-
tion. These tasks include closure computation, size minimization, finer-coarser-
comparison, modification by “adding” closed sets or implications, and conversion
from one representation into another.

1 Introduction

Closure operators and closure systems are a basic notion in algebra and occur in
various computer science scenarios such as logic programming or functional de-
pendencies in databases. One central task when dealing with closure operators
is to represent them in a succinct way while still allowing for their efficient com-
putational usage. Formal concept analysis (FCA) naturally provides two com-
plementary ways of representing closure operators: by means of formal contexts
on one side and implication sets on the other. Although being complementary,
these two representation modes share a lot of properties:

— Both allow for tractable closure computation.

— Both kinds of data structures do not uniquely represent the corresponding
closure operator, but in either case, there is a well-known minimal “normal
form” which is unique up to isomorphism: row-reduced formal contexts and
canonical bases.

— In both cases, this normal form can be computed with polynomial effort.

For a given closure operator, the space needed to represent it in one or the other
way may differ significantly: there are closure operators whose minimal impli-
cational representation is exponentially larger than their minimal contextual one
and vice versa (see Section 3).

Thus, it seems worthwhile to modify algorithms which store and manipulate
closure operators (as many FCA algorithms do) such that they can switch be-
tween the two representations depending on which is more memory-efficient. To



this end, algorithms performing basic operations on closure operators need to be
available for both representations. Moreover, conversion methods from one rep-
resentation to the other are needed and their computational complexity needs
to be analyzed. Thereby, it is not only interesting to determine the required re-
sources related to the size of the input, but also to the size of the output. This is
to account for the fact, that (in order to be “fair”’) an algorithm creating a larger
output should be allowed to take more time and use more memory.

Next to surveying well-known complexity results for tasks related to closure
operators in different representations, this paper’s noteworthy original contribu-
tions are the following:

— We clarify the complexities for comparing closure operators in different rep-
resentations in terms of whether one is a refinement of the other. Interest-
ingly, some of the investigated comparison tasks are tractable (i.e. time-
polynomial), others are not.

— We show how to compute an implication set which realizes the closure op-
erator of a given context and has polynomial size compared to the size of the
context. This is achieved by virtue of auxiliary attributes. Note that this con-
trasts results according to which without such auxiliary attributes, a worst-
case exponential blow-up is unavoidable.

— Exploiting this polynomial representation, we propose an alternative algo-
rithm for computing the Duquenne-Guigues base of a given context.

The paper is organized as follows. After recalling some basics about closure op-
erators and formal concept analysis in Section 2, we note that no representation
is generally superior to the other in terms of the size needed to store it in Sec-
tion 3. Finally, Section 4 provides algorithms and complexity results before we
conclude in Section 5.

2 Preliminaries

We start providing a condensed overview over the notions used in this paper.

2.1 Closure Operators

Definition 1. Let M be an arbitrary set. A function ¢ : 2M — 2M s called a
closure operator on M if it is

1. extensive, i.e., A C ¢(A) forall A C M,
2. monotone, i.e., A C B implies p(A) C ¢(B) forall A, B C M, and
3. idempotent, i.e., (©(A)) = ¢(A) for all A C M.



A set A C M is called closed (or ¢-closed in case of ambiguity), if p(A) = A.
The set of all closed sets {A | A = ¢(A) C M} is called closure system.

It is easy to show that for an arbitrary closure system S, the corresponding
closure operator ¢ can be reconstructed by

o= [ B

BeS, ACB

Hence, there is a one-to-one correspondence between a closure operator and the
according closure system.

Definition 2. Given two closure operators ¢ and  on M, ¢ is called finer than
W (written ¢ <, alternatively we also say  is coarser than ¢) if every ¢-closed
set is also y-closed. We call ¢ and  equivalent (written ¢ = ), if p(A) = Y(A)
forallAC M.

It is well-known that the set of all closure operators together with the “finer
than” relation constitutes a complete lattice.

2.2 Contexts

Following the normal line of argumentation of FCA [8], we use formal contexts
as data structure to encode closure operators.

Definition 3. A formal context K is a triple (G, M, I) with an arbitrary set G
called objects, an arbitrary set M called attributes, and a relation I € G X M
called incidence relation. The size of K (written: #K) is defined as |G| - |M|, i.e.
the number of bits to store I.

This basic data structure can then be used to define operations on sets of objects
or attributes, respectively.

Definition 4. Let K = (G, M, I) be a formal context. We define a function (-)! :
26 5 2M with G! = {m | glm forall g € G} for G C G. Furthermore, we
use the same notation to define the function (-)! : 2M — 29 where M = {g |
glm forallm e M) forl\~/[ C M. For convenience, we sometimes write g' instead

of{g}l and m" instead of{m}l.

Applied to an object set, this function yields all attributes common to these
objects; by applying it to an attribute set we get the set of all objects having
those attributes. The following facts are consequences of the above definitions:

— ()!'is a closure operator on G as well as on M.



— For A € G, Al is a (-)!-closed set and dually
— for BC M, B is a (-)!!-closed set.

In the following, we will focus only on the closure operator on attribute sets and
exploit the fact that this closure operator is independent from the concrete object
set G; it suffices to know the set of the context’s object intents. Thus, we will
directly use intent sets, that is: families # of subsets of M to represent formal
contexts.

Definition 5. Given a family & C 2M, we let K(F) denote the formal context
(G,M,I) with G = F and, for an A € ¥, we let Alm exactly if m € A. Given
B C M, we use the notation B” to denote the attribute closure B" in K(F) and
let #F = #K(F) = |F| - IM]|.

For the sake of simplicity we will from now on to refer to ¥ as contexts (on M).
We recall the first basic complexity result:

Proposition 1. For any context ¥ on a set M and any set A C M, the closure
AT can be computed in O#F) = O(F| - IM)) time and O(IM)) space.

Given an arbitrary context # representing some closure operator ¢ on some set
M, the question whether there exists another # representing ¢ and satisfying
#F' < #F — and if so, how to compute it — is straightforwardly solved by noting
that this coincides with the question if K(¥) is row-reduced and how to row-
reduce it. Hence we obtain:

Proposition 2. Given a context ¥ on M, a size-minimal context ' with (-)T =
()" can be computed in O(F| - #F) = O(F | - |M|) time and O(|M)) space.

Algorithm 1 displays the according method cast in our representation via set
families.

We close this section by noting that for a given closure operator ¢, the minimal
F with ¢ = ()7 is uniquely determined. We will denote it by F (¢).

2.3 Implications

Given a set of attributes, implications on that set are logical expressions that
can be used to describe certain attribute correspondences which are valid for all
objects in a formal context.

Definition 6. Let M be an arbitrary set. An implication on M is a pair (A, B)
with A, B € M. To support intuition we write A — B instead of (A, B). We say
an implication A — B holds for an attribute set C (also: C respects A — B),



if A € C or B C C. Moreover, an implication it holds (or: is valid) in a formal
context K = (G, M, I) if it holds for all sets g' with g € G. We then write K = 1,
The size of an implication set I (written: #3) is defined as |3| - |M|. Given a set
A C M and a set 3 of implications on M, we write A> for the smallest set that
contains A and respects all implications from 3. (Since those two requirements
are preserved under intersection, the existence of a smallest such set is assured).

It is obvious that for any set I of implications on M, the operation (-)° is a
closure operator on M. Furthermore, it can be easily shown that an implication
A — Bis valid in a formal context K = (G, M, I) exactly if B C Al

The following result is an often noted and straightforward consequence from
[16].

Proposition 3. For any attribute set B C M and set I of implications, B> can
be computed in O#3I) = O(|3| - |[M|) time and O(|M|) space.

Like in the case of the contextual encoding, also here it is natural to ask for a
size-minimal set of implications that corresponds to a certain closure operator.
Although there is in general no unique minimal implication set for a given clo-
sure operator ¢, the so-called Duquenne-Guigues base or stem base [10] is often
used as a (minimal) canonical representation. We follow this practice and denote
it by 3(¢).

Algorithm 2 (cf. [1,22, 19]) provides a well-known way to turn an arbitrary
implication set into an equivalent Duquenne-Guigues base. Thus we can note
the following complexity result.

Proposition 4 (Day 1992). Given a set 3 of implications on M, a size-minimal
S with (-)° = () can be computed in O(|3| - #3J) = O(3? - |M)) time and
O(3| - |M)) space.

A closer look at the algorithm reveals that the O(|3| - |M|) space bound comes
about by the necessity of a 2-pass processing of the implication set. Note that
both passes can be performed in situ (i.e., by overwriting the input with the
output) which would require only O(|M|) additional memory.

3 Size Comparisons

Given these two encodings which are very alike with respect to the complexities
of computing closures and minimization, a question which arises naturally is
whether one encoding is superior to the other in terms of memory required to
store it. First of all, note that for a given M, the size of both representations is
bounded by 2M!'. |M|, i.e. at most exponential in the size of M.



Algorithm 1 minimizeContext Algorithm 2 minimizeImpSet

Input: context ¥ on M Input: implication set I on M
Output: size-minimal context ¥’ Qutput: size-minimal implication set J’
such that (-)" = ()"’ such that (-) = O
1: 7 =5 1: 3:=0
2: for each A € ¥’ do 2: for each A — B € 3 do
3: if A=A\ then 33 I:=3JU{A—> (AUB)Y
4: F'=F"\{A} 4: end for
5 end if 5:3:=0 _
6: end for 6: for each A — B € 3 do
7: output 7’ 7: delete A — Bfrom 3
8 C:=AW
9: if C # B then
10: I :=F U{C - B}
11: end if
12: end for
13: output I’

The following proposition shows that for some ¢, #F (¢) is exponentially larger
than #3(p).

Proposition 5. There exists a sequence (¢n)nen Of closure operators such that
#F () € O™ whereas #3(p,) € On?).

Proof. We define ¢, as the closure operator on the set M, = {1,...,2n} that
corresponds to the implication set 3, containing the implication {2i — 1, 2i} —
M, for every i € {1,...,n}. Then, we obtain #3(¢,) = 2n?%. On the other hand,
F(pn) = {2k—ar|l <k <n}|{ay,...,a,) €{0,1}"} (as schematically displayed
in Fig. 1) whence we obtain #F (¢,) = 2" - 2n. O

[ [[1]2].- [2n-3]2n-2[2n—1]2n]

g1 ||X X X

g ||% X X
g ||% X X

g4 ||X X X
gon_y X|... X X

g x|... X X

Fig. 1. Example for a context that is exponential in the size of its stem base



On the other hand, as a consequence of a result on the number of pseudo-intents
[13,17], we know that the converse is true as well: for some ¢, #3(¢) is expo-
nentially larger than #F (¢).

Proposition 6 (Kuznetsov 2004, Mannila & Réihé 1992). There exists a se-
quence (gp)nen of closure operators such that #F (p,) € On?) but #3(¢,) €
o02M.

This result seems to imply that in general, one cannot avoid the exponential
blowup if a contextually represented closure operator is to be represented by
means of implications.

However, as the following definition and theorem show, this only holds if M is
supposed to be fixed. If we allow for a bit more freedom in terms of the used
attribute set, this blowup can be avoided.

Definition 7. Given a context ¥ on a set M, let M* denote the set M extended
by a one new attribute mp for each F € F. Then we define 35 as implication
set on M* containing for every m € M the two implications {m} — {mp | F €
F.m¢g Fyand{mp | F € F,m¢ F} — {m).

Theorem 7. Given a context F on a set M, the following hold

1 #35 =2-IM|-|M*|=2-M|- (M| +|F] < (HF ).
2. (Y = ()|, that is, AT = AST 0\ M forall A C M.

Proof. The first claim is obvious.

For the second claim, we first show that for an arbitrary set A C M holds A" =
BuCwithB:={mp|FeF, AL F)andC :={m|{mp | F € F,m¢ F} C B}.
To show A C BUC we note that A € BUC and that BUC is S#-closed: BUC
satisfies all implications of the type {mp | F € ¥,m ¢ F} — {m} by definition
of C. To check implications of the second type, {m} — {mp | F € F,m ¢ F},
we note that

C={m|{mp|Fe¥F,m¢F}C B}
={m|{mp|FeF,m¢F}C{mp|Fe¥F,ALF}}
=m|VFeF :m¢F >ALF}

Now, picking an m € C, we find that every mp for which m ¢ F must also
satisfy A ¢ F and therefore mr € B so we find all implications of the second
type satisfied.

Further, we show B U C C A7, by proving B C A% and C C A7 separately.
We obtain B = {mp | F € F,A ¢ F} C A" due to the following: given an
F e ¥ withA ¢ F, we find an m € A with m ¢ F and thus an implication
m — {mpg, ...} contained in I, therefore A>7 must contain mp.



We then also obtain C := {m | {mp | F € F,m ¢ F} C B} C A" by the
following argument: picking an m € C, we find the implication {mp | F €
F,m ¢ F} — {m} contained in J#. On the other hand, we already know B C
A3 and B2 {mp | F € F,m ¢ F}, hence m € A" .

Finally, we obtain A |, =AY "M =C={m|VFeF :m¢F - A¢F}=
m|VFeF :ACF >meF}=\pegacr F =A forany A C M. o

Thus, we obtain a polynomially size-bounded implicational representation of a
context. In our view this is a remarkable — although not too intricate — insight as
it seems to challenge the practical relevance of computationally hard problems
w.r.t. pseudo-intents (recognizing, enumerating, counting), on which theoretical
FCA research has been focusing lately [14, 19, 15,21, 20, 2].

4 Algorithms for Managing Closure Operators

4.1 Finer or Coarser?

Depending on how closure operators are represented, there are several ways of
checking if one is finer than the other. As the general case, we consider the
situation where both closure operators are given in a “black-box” manner, i.e.
as opaque functions that we can call and that come with runtime guarantees.

Theorem 8. Let ¢ and  be closure operators on a set M for which computing
of closures can be performed in time t, and ty, respectively and space s, and
sy, respectively. Moreover, let cl, = [{¢(A) | A € M}|.

Then, ¢ < can be decided in O(cl, - (IM| - t, + t,)) and in O™ - (1, + t,)).
The space complexity is bounded by O(sy + sy).

Proof. For the O(cl,-(|M|-1,+1,)) time bound, we employ Ganter’s NextClosure
algorithm [6, 7] for enumerating the closed sets of ¢. We note that (i) it only
makes use of the closure operator in a black-box manner (that is, it does not
depend on a its specific representation) by calling it as a function and (ii) it has
polynomial delay, more precisely the time between two closed sets being output
is O(IM| - t,). For each delivered closed set, we have to additionally check if it
is y-closed, hence the overall time needed per ¢-closed set is O(|M]| - 1, + t,).
The OQ2M!. (t, + ty)) bound can be obtained by naively checking all subsets of
M for ¢-closedness and y-closedness.

In both cases, no intermediary information needs to be stored between testing
successive sets which explains the space complexity. |

Note that all known black-box algorithms require exponentially many closure
computations w.r.t. to |M|. This raises the question whether this bound can be



Algorithm 3 finerThanContext Algorithm 4 coarserThanImpSet

Input: closure operator ¢ on set M, Input: closure operator ¢ on set M,
context implication set 3
Output: YES if ¢ < ()7, NO otherwise Output: YES if (-)° < ¢, NO otherwise
1: for each A € ¥ do 1: foreachA — Be 3 do
2 if A # ¢(A) then 2 if B Z ¢(A) then
3 output NO 3 output NO
4 exit 4 exit
5:  endif 5:  endif
6: end for 6: end for
7: output YES 7: output YES

improved if one or both of the to-be-compared closure operators are available
in a specific representation. The subsequent theorem captures the cases where
polynomially many calls suffice.

Theorem 9. Let ¢ be a closure operator on a set M for which computing of
closures can be performed in t, time and s, space. Then, the following hold:

— for a context F on M, the problem ¢ < (-)' can be decided in || - 1, time
and s, space and

— for an implication set 3 on M, the problem (-)> < ¢ can be decided in |3| - 1,
time and s, space.

Proof. Algorithm 3 provides a solution for the first case. It verifies that every
element (in other words: every object intent) of F is ¢-closed, this suffices to
guarantee that all #-closed sets are ¢-closed since every ¥ -closed set is an
intersection of elements of ¥ and ¢-closed sets are closed under intersections
(since this holds for every closure operator).

Algorithm 4 provides a solution for the second case. To ensure that every ¢-
closed set is also (-)°-closed, it suffices to show that every ¢-closed set respects
all implications from 3. If every ¢-closed set respects an implication A — B € 3
can in turn be verified by checking if B C ¢(A). m|

The results established in the above theorem give rise to precise polynomial
complexity bounds for three of the four possible comparisons of closure opera-
tors which are contextually or implicationally represented.

Corollary 10. Given contexts ¥, F "' and implication sets 3,3’ on some set M,
it is possible to check

- (7 2 () intime O(F|-1F’| - M),



- () <)Y intime O(3| - || - IM)), and
- () <)% in time O(F] - |3| - IM)).

Surprisingly, the ensuing question — whether it is possible to establish a polyno-
mial time complexity bound for the missing comparison case — has to be denied
assuming P # NP, as the following theorem shows.!

Theorem 11. Given a context ¥ and an implication set I on some set M, de-
ciding if <07 is coNP-complete.

Proof. To show coNP membership, we note that (-)° £ ()7 if and only if there
is a set A and which is (-)3-closed but not (-)” -closed. Clearly, we can guess
such a set and check the above properties in polynomial time.

We show coNP hardness, by a polynomial reduction of the problem to 3SAT
[11]. Given a set C = {Cy,...,Cy} of 3-clauses (i.e. |C;| = 3) over a set of
literals L = {p1, —p1,... pe, 2 pe}, we let M = L and define

3 :={{pi,~pi} > M| p; € L}

as well as
F={M\(C;U{m})|C;eC,me M}.

We now show that there is a set A with A¥ = A but A7 # A exactly if there is a
valuation on {p1, ..., p¢} for which C is satisfied.

For the “if” direction assume val : {p1, ..., p¢} — {true, false} to be that valua-
tion and define A := {p; | val(p;) = true} U {-p; | val(p;) = false}. Obviously, A
is (-)°-closed. On the other hand, since by definition A must contain one element
from each C; € C, we have that F ¢ A for all F € ¥ and hence A” = M # A.
For the “only if”” direction, assume A~ = A but A” # A. By construction of 7,
the latter can only be the case if A contains one element of each C; € C. Thus,

the valuation val : {py, ..., pe} — {true, false} with
_ftrue ifp;eA
vallpi) = { false otherwise

witnesses the satisfiability of C. |

Drawing from the above black-box case, a straightforward deterministic algo-
rithm for testing (-)° < (-)” would need to subsequently generate all closed
sets of J (e.g. by Ganter’s algorithm [6, 7]) and check closedness w.r.t. 7. This
algorithm would, however, require exponential time w.r.t. |M| in the worst case.

! As indicated by a reviewer, this result in a slightly different formulation is already known in
other communities, cf. [9].



4.2 Adding a Closed Set

We now consider the task of making a closure operator ¢ minimally “finer” by
requiring that a given set A be a closed set.

Definition 8. Given a closure operator ¢ on M and some A C M, the A-
refinement of ¢ (written @l A) is defined as the coarsest closure operator  with
U < pand y(A) = A.

It is straightforward to show that B is a ¢|A-closed set exactly if it is ¢-closed
or the intersection of A and a ¢-closed set. Clearly, if a closure operator is repre-
sented as formal context, refinements can be computed by simply adding a row,
i.e. for any context ¥ on M and set A C M we have for ¥’ := F U {A} that
() A = (7. Of course, ¥’ will in general not be size-minimal even if F is.

Fact 12. Given a context F on M and some A € M, an F' with () = ()7 |A
can be computed in O(|M|) time and constant space. Moreover, we have |F'| <

7]+ 1.

If the closure operator is represented in terms of implications, a little more work
is needed for this task.

Proposition 13. Given an implication set 3 on M and some A € M, an ¥’
with ()% = () |A can be computed in O(|3| - IM|?) time. Moreover, we have
I3 < 13- [M].

Proof. Algorithm 5 ensures the claimed complexity behavior. We now show
that it is correct by proving that a subset of M is ()% -closed iff it is (-)-closed
or the intersection of A and some (-)°-closed set.

For the “if” direction, note that all implications from 3’ are entailed by 3, there-
fore all (-)°-closed sets are (-)° -closed. Further we note that A is obviously
(-)¥ -closed. As intersections preserve closedness the above implies that all in-
tersections of A and an J-closed sets must be (-)* -closed.

For the “only if” direction, let S be a (-)¥'-closed set. If we assume S C A we
find that S¥ = SSNA. If S ¢ A, there exists an m € S \ A. But then we find
§Y =83 O

4.3 Adding an Implication

The task dual to the one from the preceding section is to make a given closure
operator coarser by requiring that all closed sets of the coarsened version respect
a given implication. In other words, all closed sets not respecting the implication
are removed.



Definition 9. Given a closure operator ¢ on M and some implicationi = A —
B with A,B C M, the i-coarsening of ¢ (written ¢11) is defined as the finest
closure operator  with ¢ < and B C y/(A).

Clearly, if a closure operator is represented as implication set, coarsenings can
be computed by simply adding the implication to the set. Note that 3" := J U {i}
will in general not be size-minimal.

Fact 14. Given an implication set 3 on M and some implication i on M, an 3’
with ()5 = (-)31i can be computed in O(IM|) time and constant space. More-
over, we have |F'| < |F| + 1.

If the closure operator is represented by a context, a little more work is needed
for this task.

Proposition 15. Given a context ¥ on M and some implication it on M, an ¥’
with ()7 = ()" 1i can be computed in O(F? - |M)) time. Moreover, we have
77| < |F 2.

Proof. Itis easy to check that Algorithm 6 satisfies the given complexity bounds.
We show its correctness by verifying that a set is (-)” -closed exactly if it is (-)” -
closed and respects A — B.

For the “if” direction, let S be an (-)* -closed set that respects A — B. This
means that either B C S or A € S. In the first case, note that every F € ¥ with
S C F respects A — B and thus each such F is contained in "’ as well. Since
S is the intersection of all these F it must itself be ()7 -closed. In the second
case, there must be some F € ¥ with S C F with A ¢ F. Thus we obtain

S = mSgF’eT F’
= (mSQF/ET,S respects A—>B F,) n (mSQF’e?,S violates A—»B F,) NnF
= (mSQF’G‘F,S respects A—>B F/) N (mSQF’ET,S violates A—B F'n F)

and see that S is an intersection of (-)” -closed sets and hence itself (-)” -closed.
For the “only if” direction, consider an arbitrary ()" -closed set S. It can be
easily checked that all F € ¥’ respect A — B, hence also S does. Moreover,
by definition, every F € ¥ is an intersection of elements of ¥ and thus (-)” -
closed. |

4.4 Conversion of Representations

We conclude this paper by considering the problem of extracting minimal impli-
cational or contextual representations from black-box closure operators. While



Algorithm 5 addClosedSet Algorithm 6 addImplication

Input: implication set 3 on M, set A C M Input: context ¥ on M,
Output: implication set 3’ with (-)¥ = ()4 implicationi = A — Bon M
I: 3:=0 Output: context 7 with ()" = ()"
2: foreach B —» C € 3 do I 7 :=0
3 if B — C is respected by A then 2: for each C € ¥ do
4: I =3 U{B - C} 3 if C respects A — B then
5: else 4 F':=F"U{C}
6: I =3 U{B->CnA} 5 else
7 for eachm e M \ A do 6: for each D € ¥ with A ¢ D do
8: I =3 U{BU{m} - C} 7 F'=F"uU{CNnD}
9: end for 8 end for
10: end if 9 end if
11: end for 10: end for
12: output I’ 11: output ¥’

the problem of finding a minimal implication base has been considered exten-
sively, the dual task has hardly been considered so far. In both cases, however,
no output-polynomial algorithm could be established.

We start by considering the dual task: given a black-box closure operator ¢,
how can we compute 7 (¢)? Algorithm 7 displays a semi-naive approach which
essentially computes the row-reduced version of the context containing all ¢-
closed sets, but size-minimizes the context on the way by progressing in reverse
lectic order. This yields us with an algorithm requiring oM. (t, +#7F (¢)) time
but only |M]| space. If ¢ is represented by an implication set 3, this amounts to a
time complexity of OQ2M! - |M| - (13| + |F ()])

Unfortunately, this still means that the algorithm is worst-case time-exponential
w.r.t. |M|, even if #F (¢) is “small” (i.e., polynomially bounded w.r.t. [M]). As a
straightforward example, consider the closure operator ¢ig with ¢;q(A) = A for
all A € M, for which ¥ (¢iq) = {M \ {m} | m € M}. In fact, the question whether
a better, tractable behavior can be obtained at all has to be refuted: it follows
rather directly from Thm 5.2 of [5], that no output-polynomial algorithm for
this task can exist.?

Finally reviewing the more popular task of determining the stem base of a given
formal context, the following can be shown by an inspection of Ganter’s algo-
rithm for enumerating all pseudo-closed sets of a closure operator [6, 7].

2 More precisely, the authors of [5] provide a representation of propositional Horn theories that
admits for polynomial computation of the associated closure operator but does not allow for
polynomial delay enumeration of ““‘characteristic models”, that is intents of the corresponding
reduced context.



Algorithm 7 extractContext Algorithm 8 contextToImpSet

Input: closure operator ¢ on set M Input: context ¥ on set M
Output: context 7 (¢) Output: implication set I((-)")
I: F=0 1: compute I#
2: for each F C M, enumerated 2: 3 =3¢
in inverse lectic order do 3: for each my € M* \ M do
3:  if F = ¢F then 4: I =0
4: if F # F” then 5:  foreachA — Bc Jdo
5: F =F U{F} 6: 3 =F U{A > B\ {mr}}
6: end if 7 if mr € B\ A then
7 end if 8: for each C —» D € 3 withmy € C do
8: end for 9: I =F U{AUC\ {mp} — D}
9: output ¥ 10: end for
11: end if
12: end for
13: J :=minimizeImpSet(J’)
14: end for
15: output 3

Proposition 16 (essentially Ganter 1984). Let ¢ be a closure operator on a set
M for which computing of closures can be performed in time t, and space s,.
Then 3(¢) can be computed in time OQM\-(t,+#3(¢))) = OQRM\-(t,+|M|-|3(p)]))
and space O(sy).

For the case of ¢ being explicitly represented by a context, this implies that
converting a contextual representation into an implicational one can be done in
time O - (#F + #3(()"))) = 0™ - [M] - (IF ] + 13-

The results from Section 3 give rise to a quite different approach of computing
3(()") from a given F. Starting from the polynomial-size implicational repre-
sentation 37 of a context #, one can one-by-one remove the auxiliary attributes
mp by a resolution procedure, while minimizing the intermediate implicational
representations via minimizeImpSet. This method is formally specified in Al-
gorithm 8. While the correctness of the algorithm is a rather immediate, estab-
lishing complexity results is the subject of ongoing work. Whether the algo-
rithm turns out to be output-polynomial must, however, be doubted given that
this would imply the existence of an output-polynomial algorithm for finding
the transversal hypergraph of a given hypergraph (as first observed in [12] and
put in FCA terms in [3]), which has been an open problem for over 20 years
now (see [4] for a comprehensive overview). Moreover, it has been shown that
no polynomial-delay algorithms for enumerating the stembase in lectic [2] or
inverse lectic [18] order can exist unless P = NP.



5 Conclusion

We have investigated runtime and memory requirements for diverse tasks re-
lated to closure operators. The overview displayed in Table 1 reveals a certain
duality between the two representations forms — context or implication set — and
ascertains that none can be generally preferred to the other.

Table 1. Time complexities for different representations and tasks.

\context F \implication set I ‘
closure O(F 1 - IM)) o(|3] - IM))
turn to minimal 7' |O(F - |M]) O™ M|~ (3] + [ (DD
turn to minimal I’ [0OQ2™M' - M| - (F] + I3(()7))| O3 - |M])
check if & finer  |O(F | + 3] - [M]- 2™ (RBRARI)
check if F’ finer |O(|F|- |F'| - IM]) O(F"| - 13| - IM])
check if 3’ coarser |O(|F |- || - |M]) o(|3] - |3'] - IM))
check if ¥’ coarser|O(|F| - |F'| - M) O(F'| + 3] - [M| - 2™
extract from ¢ O(M| - |F (o)l o(M| - |F ()l

(o + M| - I3(p)]) (o + M| - I3(p)])

add implication  |O(F|* - IM]) O(M)
add closed set o(M) o(3| - M)

There are many open questions left. On the theoretical side, central open prob-
lems are if there are algorithms transforming contextual into implicational rep-
resentations and vice versa in output polynomial time. Note that a negative an-
swer to this question would also disprove the existence of polynomial-delay
algorithms.

On the practical side, coming back to our initial motivation, it should be exper-
imentally investigated if variants of standard FCA algorithms can be improved
by adding the option of working with alternative closure operator representa-
tions.

Moreover, the proposed alternative algorithm for computing the Duquenne-
Guigues base should be evaluated against Ganter’s algorithm on typical datasets
from practical use cases, in order to assess its practical use.
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