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Abstract. Market mechanisms provide an efficient institution for allocating ser-
vice offers and requests. In doing so, negotiations betweenthe market participants
play a crucial role. However, current policy languages are ill-suited to realize ben-
eficial trade-offs within a negotiation, since they supportonly boolean decisions.
Therefore, we suggest an approach where preferences are modeled as utility func-
tions. We show, how such preferences can be specified with description logics to
enable the use of existing inference engines for calculating the degree of policy
satisfaction by offers/requests which can be considered inthe negotiation process.

1 Introduction

Web services are self-contained, modular business applications that have open, Internet-
oriented, standards-based interfaces, e.g. WSDL. They allow flexible and dynamic soft-
ware integration that is often referred to as the ”Find-Bind-Execute”-paradigm. More-
over, by using standard Internet technology, Web services facilitate cross-organizational
transactions and thus outsourcing of software functionality to external service providers.
When moving from distributed systems operating within one company to systems that
involve different, independent companies, the ”Find-Bind-Execute”-schema describes
nothing else than a B2B procurement process, where digital services such as informa-
tion delivery or execution of calculations are purchased. Thus, service-oriented com-
puting requires an infrastructure that provides a mechanism for coordinating between
service requesters and providers. This coordination mechanism has to provide a plat-
form where potential business partners can be discovered, prices can be ascertained,
and contracts can be closed. A marketplace, where prices aredetermined by the inter-
play between supply and demand, can be regarded as a coordination mechanism that
efficiently provides these functionalities [1].

1.1 Web Service Markets

Figure 1 brings together the phases that can be identified in an electronic market [2, 3]
and the typical Web Service usage process which comprises the steps discovery, compo-
sition, negotiation, and finally contracting. In theMatchmaking Phase suitable services
are discovered. Since a certain goal can not be accomplishedonly by a single service
but also by a combination of services this phase also includes composition. After having
determined those services that are able to achieve a certaingoal an optimal assignment
of service requests and offers with respect to the individual utility of the participants or



Fig. 1.Market phases and the Web Service usage process

to the overall welfare has to be found in theAllocation Phase. To achieve this, nego-
tiations between the participants have to be carried out. For determining the allocation
and price many different mechanisms are available ranging from simple selection ap-
proaches to complex negotiation or auction schemes. After this allocation, legally bind-
ing contracts are closed between the corresponding business partners in theContract
Formation Phase. These contracts have to be formalized in a machine-understandable
way in order to allow automated execution and monitoring.

In each market phase different kind of information is required. Functional prop-
erties, required in theMatchmaking Phase, are those attributes that are mandatory to
be able to invoke a service and to integrate the results, e.g.the input and output of a
service. That means, that for functional properties no alternatives can be specified and
thus negotiations about such properties are impossible. All discovered services fulfill
the desired goal but may differ in theirnon-functional properties which are attributes
that are not required to invoke the service nor to integrate the results, but they are the
decisive factors for service selection and price determination. For example, price, pay-
ment method, security as well as trust attributes, and most notably quality of service
attributes. Typically, for each non-functional attributethere are several alternatives that
can be adopted depending on the preferences of the trading partners. Thus, a negotiation
has to be carried out to agree on one of the alternatives. In order to be able to negotiate,
preference information about the different alternatives is required. In case of an auto-
matic negotiation it is not enough that preferences are in the user’s mind, but they have
to be formalized explicitly.

Here, the policies come into play. Policies allow to declaratively express prefer-
ences, i.e. which of the different alternatives a non-functional property may adopt. Thus,
policies can be regarded as constraints or rules that restrict the decision space within the
negotiation of agreements.

1.2 Some Motivating Scenarios

In this section some motivating examples are presented in order to illustrate why nego-
tiations about non-functional properties are required. Wecome up with examples from
the domains privacy and quality of service. However, the problems are the same for
other non-functional properties.



Privacy. A Web service might support different privacy levels. For example, a provider
either gives a guarantee to delete customer data straight after the business interaction
was carried out or the provider stores customer data for further usage. In the latter case
a discount on the service price is given to the customer, i.e.the customer could sell
private data in exchange for a discount. Which of the alternatives is more preferable to
the customer depends on how important data privacy as well asa cheap price is judged
by the customer.

Quality of Service. A Web Service interaction involves several different quality of ser-
vice criteria like response time, availability, etc. Typically, not all criteria are perfectly
met by the service providers, rather each provider has his strengths and weaknesses. In
order to decide which service suits best exact information about the requesters prefer-
ences are required, e.g. is a service with fast response timeand bad availability better
than a service with the converse properties. Moreover, one has to know if a $10 discount
in price justifies a slower response time of 10s.

In each of this examples there is a trade-off between different service properties
(e.g. quality vs. price, privacy vs. price, privacy vs. quality) which can only be resolved
by making the different attributes comparable. This can be realized by assigning utility
values to the different decision alternatives. Such cardinal preferences allow to decide
whether a certain discount is high enough to compensate the loss in utility that re-
sults from a disadvantageous property value. Hence, negotiations between the parties
may lead to service configurations that yield higher welfarefor providers as well as
requesters.

The paper is organized as follows. In section 2 a general policy framework is intro-
duced and extended to enable the representation of fine-grained preferences. We show
how preferences can be evaluated in a DL reasoner by mapping utility functions to an
appropriate description logic. We conclude in section 4 after discussing related work in
section 3.

2 Specifying Policies for Negotiation

In this section, a formalism is presented that allows formalspecification of preferences
and thus facilitates automatic decision making and negotiations. In section 2.1, a general
framework for expressing policies is introduced. This framework is based on the foun-
dational ontology DOLCE [4]. Foundational ontologies capture typicalontology design
patterns (e.g. location in space and time). By providing a sound conceptual model with
precise concept definitions they facilitate integration ofdifferent policy efforts (cf. [5]).
In section 2.2 the description framework is extended to enable the representation of
fine-grained preferences by means of description logics.

2.1 Policy Description Framework

In this section, the generic policy description framework introduced in [5] is refined.
The framework provides a generic ontology for expressing policies. Ontologies formal-
ize concepts and concept relationships very similar to conceptual database schemata or
UML class diagrams [6]. However, ontologies typically feature logic-based representa-
tion languages. Those languages come with executable calculi that allow querying and



reasoning during run-time. Moreover, ontologies facilitate the conceptual integration
of heterogeneous policy efforts by providing well-defined and machine understandable
semantics.
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Fig. 2. Sketch of the Policy Description Framework.

In order to express policies we add a Core Policy Ontology to the DOLCE ontology
stack. In the remaining part of this section we introduce thebasic principles of DOLCE,
present the design of the Core Policy Ontology, and show how the framework can be
used to express concrete policies by means of an example.

DOLCE. The foundational ontology DOLCE (Descriptive Ontology forLinguistic and
Cognitive Engineering) provides the basis for the policy description framework used in
this paper. Foundational ontologies are high-quality formalizations of domain indepen-
dent concepts and associations that contain a rich axiomatization of their vocabulary.
D&S (DnS) is an ontology module that extends DOLCE and introduces the basic dis-
tinction between descriptive (DnS : Description)1 and ground entities (DnS : Situation).
A Situation defines a state of affair (e.g. real settings in the world suchas facts or
cases), while aDescription is a conceptualization which encompasses objects such as
laws, plans, policies, etc. A detailed description of DOLCEand D&S can be found in
[4] and [7], respectively. Moreover, in order to model workflow information as well as
data the modules Ontology of Plans (OoP) and Ontology of Information Objects are in-
troduced [7].Descriptions containConcepts such asFunctionalRoles, CourseofEvents,
andParameters. Ground entities in D&S are derived from DOLCE.FunctionalRoles

are played− by Endurants, CoursesofEvents sequences Perdurants, Parameters are
valued − by Regions.

Core Policy Ontology. In order to express policies we have to extend the basic vocab-
ulary with policy specific concepts and relations, while reusing the foundational ontolo-
gies as far as possible. This core ontology contains the basic building blocks needed for
modeling policies.

1 Concepts of the ontology are written insansserif . For concepts and relations that are directly
contained in the corresponding ontology name spaces are omitted, for those derived from other
modules the corresponding name space is mentioned explicitly.



Figure 2 sketches the Core Policy Ontology (CPO) in a simplified way. All con-
cepts of the CPO are subclasses of DOLCE top-level concepts.A policy description
consists of the conceptsAgent, OoP : Task, Object, andAttribute. The entitiesAgent,
OoP : Task, andObject allow to define the application area of the policy, whileAttribute

defines the property that is constrained by the policy. This could be, for instance, a con-
straint regarding the service, the agent that invokes the service, etc. TheAttribute is
DnS : valued − by an AttributeValue which is aDolce : Region and specifies which
attribute values are allowed according to the policy.

During run-time the policy has to be enforced by the system. This is done in a
concretePolicyEnforcementSituation which represents the current state of the system.
In doing so, it has to be checked if theDnS : Concepts in the DnS : Description are
DnS : classified by an entity in theDnS : Situation. If this is the case aDnS : satisfies

relation is introduced betweenPolicyEnforcementSituation andPolicyDescription as
specified in [8]. The actual attribute value in the situation(denoted bySituationValue)
classifies thePolicyValue only in case theDolce : Region defined in theSituationValue

is contained in theDolce : Region of thePolicyValue. In this case the policy is met.

Example. In the following we show how the framework introduced above is applied to
specify concrete policies. Again we fall back on the privacyand quality of service do-
mains. Consider a requester policy which says that a provider may store private data of
the customer only for up to 14 days. This can be formalized by means of the Core Policy
Ontology as show in figure 3. All concepts of the description are instantiated by domain
specific entities. The policy will be applied if Web Service Providers (WSProvider)
store PrivateData and permits this only for 14 days. Additionally, a quality ofservice
policy is added, which specifies that the response time of theother party should be
less than 5 seconds. Therefore, a additionalAttribute ResponseTime is added. Both
attributes arevaluedby anIntegerRegion.
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Fig. 3. Specification of a Privacy Policy.

2.2 Utility-based preference specification

In section 2 a generic framework for specifying policies is introduced. However, this
framework is not expressive enough to capture fine-grained preferences as required for



supporting automatic negotiations. In the field of economics multi-attributive utility
theory [9] is typically used to address these problems. It allows to handle trade-offs
between alternatives and provides the right means for finding optimal service config-
urations. After introducing the basic idea behind utility theory, we show how such an
utility approach can be integrated into our policy description model. To achieve this,
utility functions are mapped to description logics. Further, we come up with an exam-
ple to illustrate how fine-grained policies can be specified and rankings can be derived.

Utility Theory. In the context of utility theory a preference structure is defined by the
complete, transitive, and reflexive relation�. This means the property valuep1 ∈ P is
preferred top2 ∈ P if p1 � p2. The preference structure can be derived from the value
functionvi(p) of a useri.

∀a, b ∈ P : pa � pb ⇔ vi(a) ≥ vi(b)

The functionvi(x) represents the utility defined by the relation� in a sense that the
attribute values can be ranked by comparing the numeric values of the value function.
Utility theory allows to decompose complex outcome spaces into utility functions com-
posed of several lower-dimension functions. Thus, we can describe the preference struc-
ture for the attributes relevant to a specific service separately and then combine them
to get the overall valuation. According to those definitionsa useri specifies the util-
ity function of the individual service propertiesX . Then, the overall valuation can be
approximated by using the following additive value function.

V i(x) =

n
∑

j=1

λi
jv

i
j(xj) (1)

For the additive value function above we assume mutual preferential independence be-
tween the attributes [9]. Under this assumption we can easily aggregate the utility func-
tionsvi

j(xj) of the individual attributesj to obtain the overall valuation of a service.
Additive value functions are valid in many real world scenarios and might still provide
a good approximation, even when mutual preferential independence does not hold ex-
actly [10]. The weighting factorλi

j is normalized in the range[0, 1] and allows to model
the relative importance of an attributej for a specific agenti.

Formal representation of preferences. In order to allow standard DL reasoners to
make decisions based on the introduced utility approach, utility information has to be
specified in a formal way. This can be done by modifying the conceptPolicyValue of
the Core Policy Ontology in a way that each property value in the set refers to a specific
utility value. To allow for handling of discrete as well as continuous properties complex
functions are required that map properties to utility values. In doing so, thesatisfies-
relation does no longer lead only to a pure boolean statementabout the conformity of
a Situation with respect to thePolicyDescription, but it leads to a statement about the
degree of conformity. This is exactly the information that is required in order to auto-
mate negotiations. To facilitate the representation usingdescription logics we restrict
ourself to piecewise linear utility functions since such functions can be defined just by
sets of points inR2. We use the description logicALC(D + Σ) with concrete domains
and aggregates as proposed in [11]. The set of two points withadjacentx-coordinates
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can be interpreted as a straight line. For every line between(x1, y1) and(x2, y2) and a
givenx, we calculate anα as follows.

α =

{

y1−y2

x1−x2

(x − x1) + y1, if x1 ≤ x ≤ x2

0, otherwise,
(2)

We model this by defining a conceptYL, to capture theαs as described above.

YL ⊑ OIO : InformationObject ⊓ ∃α.R[0,1], (3)

whereα is a functional role. This means for defining piecewise linear functions the se-
mantics ofPolicyValue has to be modified to a subclass of theDolce : AbstractRegion

µ that contains the set of points(x, y) which constitutes the utility function. More-
over, we define the relation∃yl.YL from SituationValue to theDolce : AbstractRegion

YL. A SituationValue will be in as many relation instances ofyl with instances ofYL

as there are lines in the utility functionµ. The utility value of aSituationValue a ac-
cording toµ is then just the sum of all suchα over all the lines ofµ. Further, we
define a relationsatisfies (specialization ofOIO : realizes) from SituationValue to the
OIO : InformationObject Satisfiability, which is defined as

Satisfiability ⊑ OIO : InformationObject ⊓ ∃pv.PolicyValue ⊓ ∃degree.R[0,1]. (4)

Now, the axiom
P=(satisfies ◦ degree,

∑

(yl ◦ α)), (5)

where the predicateP=(x, y) is true iff x = y, ensures that the utility value of an
individual a according to the functionµ is equal to the sum of allα over all lines of
µ. Based on this result we can calculated the weighted degree of satisfactionwds by
means of the following formula:

P∗(wds ◦ degree, satisfies ◦ degree, λi
j), (6)



The predicateP∗(x, y) is true iff the conditionwds ∗ degree = (satisfies ∗ degree) ∗
weight holds. As already introduced,λi

j represents the relative importance of attribute
j defined by useri.

Finally, the weighted degrees of satisfactionwds have to be aggregated in order to
derive the overall degree of satisfaction. Analogously, this is done by the axiom

P=(satisfies ◦ degree,
∑

aj ◦ wds ◦ degree) (7)

whereaj refers to thejth attribute.
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Fig. 5.Example

Example For this example the privacy policy used in section 2.1 is modified by intro-
ducing a piecewise linear functionµ as follows:{(0, 1), (10, 0.75), (20, 0.25), (30, 0)}.
That means the best alternative for the customer is realizedwhen the provider does not
store her private data. Consequently, the utility decreases with the number of days the
private data is stored. After 10 days only 75% and after 20 days only one quarter of
the overall utility remains. Beginning with a storage time of 30 days no utility can be
derived from the property any more. The four points defined above result in a function
containing three lines. This obviously leads to three relation instancesyl in YL. For a
service that stores data for 14 days the relation to all threeinstances ofYL has to be
calculated in order to derive the utility valuesα. Now, according to equation 6 the de-
gree of satisfiability can be determined by aggregating theα-values. For our example,
this calculation results in a degree of0 + 0.55 + 0 = 0.55. Analogously, the degree
of satisfiability can be calculated for the attributeResponseTime. We assume this re-
sults in adegree of 0.7 and that quality and privacy are equally important to our user
(λ1 = λ2 = 0.5).

Now, the weighted degree of satisfactionwds for an attribute can be calculated by
multiplying degree with the corresponding weighting factor. This results in awds of
0.55 ∗ 0.5 = 0.275 for the privacy policy and0.7 ∗ 0.5 = 0.35 for the quality policy.
Consequently, the overall degree of satisfaction will be0.275 + 0.35 = 0.625.



3 Related Work

Many policy languages such as WS Policy, WS Security, EPAL, XACML, and others
emerged in the Web Service community. Our work differs from these languages in that
we base on a formal and extensible conceptual model. Furthermore, the WS* languages
base on discrete reasoning or only vaguely define the semantics. Like our work, KAoS
[12] and Rei [13] are also based on formal ontologies. In contrast to KAoS and Rei
our work is currently restricted to obligations. Other modalities like permissions are
not supported yet. However, both do not aim at unifying policy languages via foun-
dational ontologies and apply a discrete reasoning approach that allows for boolean
decisions only. For instance, those languages are suitablefor deciding if a service is
suitable according to specific policy, but make no statementabout the degree of suit-
ability. Furthermore, ontology-based policy languages often lack support for aggrega-
tion functions. This is tackled in our approach by relying onan expressive description
logic (ALC(D + Σ)).

Moreover, in contrast to this work existing policy languages do not allow for ex-
pressing preference relations between different service configurations (e.g. between dif-
ferent privacy or quality levels) as well as weighting factor for the service properties.
But this is necessary realizing beneficial trade-offs in a multi-attributive environment.
However, some allow to assign priorities to individual policies or rules, which is not yet
possible using our approach.

[14, 15] suggest to use utility functions in order to expresspolicies and facilitate
negotiation. However, they present no formal model for representing such utility in-
formation in a declarative, machine understandable, and interoperable way. But this is
required to enable automatic negotiations in a distributedand heterogeneous environ-
ment. Therefore, we suggest an approach where utility information is represented by
means of OWL-DL. This allows reasoning over preference information by means of
standard inference engines.

Moreover, there are already existing approaches for policybased negotiation in the
Semantic Web Service domain. Since deriving accurate as well as complete descrip-
tions of Web Services is hardly manageable due to the information volume needed and
the dynamic aspects that might require continuous updates of the service description,
[16] introduces a contracting step where abstract service descriptions are concretized
by means of individual negotiations. This procedure aims tofind suitable services while
keeping the descriptions simple and thus manageable. The work in this paper is com-
plementary since we focus on the selection of the most suitable service while assuming
that the set of suitable services are discovered already in the matchmaking phase be-
fore the negotiation. In [17] functional goals as well as policies are considered to find
compatible services. In doing so delegation as well as trustnegotiation play a crucial
role, i.e. trust between two parties increases with each negotiation step. However, both
approaches mentioned above allow only to derive a pure boolean statement about the
compliance between policies. For selection as well as negotiation more fine-grained
information about the degree of compliance might be necessary, e.g. in order to rank
services or generate a counteroffer.



4 Conclusion

In this paper, we considered electronic markets as big picture and motivated the need
of formal specification of policies in the allocation phase.We presented a technique
for formally specifying user preferences for Web service properties and how ranking
for Web services can be calculated based on such preferences. Our policy description
framework is based on the foundational ontology DOLCE and thus facilitates easier
integration of other policy specification languages.

In section 2.1, we have used the standard DOLCE satisfiability relation, which is in
our opinion too weak. In section 2.2, we extend the satisfiability relation in a way such
that one can talk about the degree of satisfiability. We have shown, how the degree of
satisfiability can be calculated by aALC(D + Σ) reasoner. Note, that the description
logicALC(D+Σ) is undecidable, whereas the description logicALC(D) is decidable
[18]. To be able to model the preferences withALC(D), we only need to fix the maxi-
mum number of attributes (cf. equation (1)) and the maximum number of points in the
utility function.

As discussed above, in order to enable agents to negotiate automatically without
human intervention they require very detailed informationabout the preferences of
users (e.g. utility functions for all attributes or attribute combinations, weights of the
attributes). This leads to a considerable modeling effort,which obstructs the practical
applicability. Thus, means have to be found to support and partly automate preference
specification. Since our approach is based on utility theorywe can rely on a substan-
tial quantity of decision analysis and preference elicitation tools [19] that are already
available in this context like the Analytic Hierarchy Process (AHP) [20] or a conjoint
analysis.
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