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Abstract. Although EL is a popular logic used in large existing
knowledge bases, to the best of our knowledge no procedure has yet
been proposed that computes uniform EL interpolants of general EL
terminologies. Up to now, also the bounds on the size of uniform EL
interpolants remain unknown. In this paper, we propose an approach
based on proof theory and the theory of formal tree languages to com-
puting a finite uniform interpolant for a general EL terminology if it
exists. Further, we show that, if such a finite uniform EL interpolant
exists, then there exists one that is at most triple exponential in the
size of the original TBox, and that, in the worst-case, no shorter inter-
polants exist, thereby establishing the triple exponential tight bounds
on their size.

1 Introduction

With the wide-spread adoption of ontological modeling by means of
the W3C-specified OWL Web Ontology Language [15], description
logics [2, 16] have developed into one of the most popular family of
formalisms employed for knowledge representation and reasoning.

For application scenarios where scalability of reasoning is of ut-
most importance, specific tractable sublanguages (the so-called pro-
files [12]) of OWL have been put into place, among them OWL EL
which in turn is based on DLs of the EL family [3, 1].

In view of this practical deployment of OWL and its profiles, the
importance of non-standard reasoning services for supporting knowl-
edge engineers in modeling a particular domain or in understanding
existing models by visualizing implicit dependencies between con-
cepts and roles was pointed out by the research community [4, 14].
An example of such reasoning services supporting knowledge engi-
neers in different activities is that of uniform interpolation: given a
theory using a certain vocabulary, and a subset of “relevant terms”
of that vocabulary, find a theory that uses only the relevant terms
and gives rise to the same consequences (expressible via relevant
terms) as the original theory. In particular for the understanding and
the development of complex knowledge bases, e.g., those consisting
of general concept inclusions (GCIs), the appropriate tool support
would be beneficial.

In our paper, we consider the task of uniform interpolation in the
very lightweight description logic EL. An existing approach [7] to
uniform interpolation in EL is restricted to terminologies containing
each atomic concept at most once on the left-hand side of concept
inclusions and additionally satisfying sufficient, but not necessary
acyclicity conditions. Lutz and Wolter [11] propose an approach to
uniform interpolation in expressive description logics such as ALC
featuring general terminologies, which, however does not solve the
problem of uniform interpolation in EL. Recently, Lutz, Seylan and
Wolter [9] proposed an ExpTime procedure for deciding, whether a

finite uniform EL interpolant exists for a particular general termi-
nology and a particular set of relevant terms. However, the authors
do not address the actual computation of such a uniform interpolant.
Up to now, also the bounds on the size of uniform EL interpolants
remain unknown.

In this paper, we propose a worst-case-optimal approach based on
proof theory and the theory of formal tree languages to computing a
finite uniform EL interpolant for a general terminology. For this pur-
pose, we introduce regular tree grammars representing subsumees
and subsumers of atomic concepts, which, after a sequence of non-
terminal replacements, can be transformed into a uniform EL inter-
polant of at most triple exponential size, if such a finite uniform EL
interpolant exists for the given terminology and a set of terms. Fur-
ther, by the means of an example we show that, in the worst-case, no
shorter interpolants exist, thereby establishing the triple exponential
tight bounds on the size of uniform interpolants in EL.

The paper is structured as follows: In Section 2, we recall the
necessary preliminaries on EL and regular tree languages/grammars.
Section 3 formally introduces the notion of inseparability, defines the
task of uniform interpolation and provides an example that demon-
strates that the smallest uniform interpolants in EL can be triple ex-
ponential in the size of the original knowledge base. In Section 5, we
introduce regular tree grammars representing subsumees and sub-
sumers of atomic concepts, which are the basis for computing uni-
form EL interpolants as shown in Section 6. In the same section, we
also show the upper bound on the size of uniform interpolants. We
summarize the contributions in Section 7 and discuss some ideas for
future work. Detailed proofs are available in the extended version of
this paper 1.

2 Preliminaries
Let NC and NR be countably infinite and mutually disjoint sets of
concept symbols and role symbols. An EL concept C is defined as

C ::= A|>|C u C|∃r.C

whereA and r range overNC andNR, respectively. In the following,
we use symbols A,B to denote atomic concepts and C,D to denote
arbitrary concepts. A terminology or TBox consists of concept in-
clusion axioms C v D and concept equivalence axioms C ≡ D
used as a shorthand for C v D and D v C. While knowledge
bases in general can also include a specification of individuals with
the corresponding concept and role assertions (ABox), in this paper
we abstract from ABoxes and concentrate on TBoxes. The signature
of an EL concept C or an axiom α, denoted by sig(C) or sig(α),

1 http://dl.dropbox.com/u/10637748/11.pdf



respectively, is the set of concept and role symbols occurring in it.
To distinguish between the set of concept symbols and the set of
role symbols, we use sigC(C) and sigR(C), respectively. The sig-
nature of a TBox T , in symbols sig(T ) (correspondingly, sigC(T )
and sigR(T )), is defined analogously. Next, we recall the seman-
tics of the above introduced DL constructs, which is defined by the
means of interpretations. An interpretation I is given by the domain
∆I and a function ·I assigning each concept A ∈ NC a subset AI

of ∆I and each role r ∈ NR a subset rI of ∆I × ∆I . The in-
terpretation of > is fixed to ∆I . The interpretation of an arbitrary
EL concept is defined inductively, i.e., (C uD)I = CI ∩DI and
(∃r.C)I = {x | (x, y) ∈ rI , y ∈ CI}. An interpretation I satisfies
an axiom C v D if CI ⊆ DI . I is a model of a TBox, if it satis-
fies all of its axioms. We say that a TBox T entails an axiom α (in
symbols, T |= α), if α is satisfied by all models of T .

Tree Languages and Regular Tree Grammars

A ranked alphabet is a pair (F , Arity) where F is a finite set and
Arity is a mapping from F into N. T (F) denotes the set of ground
terms over the alphabetF . LetXn be a set of n variables. A termC ∈
T (F ,Xn) containing each variable from Xn at most once is called a
context. We denote by C(F) the set of contexts containing a single
variable. A regular tree grammar G = (S,N ,F , R) is composed
of a start symbol S, a set N of non-terminal symbols (non-terminal
symbols have arity 0) with S ∈ N , a ranked alphabet F of terminal
symbols with a fixed arity such that F ∩ N = ∅, and a set R of
derivation rules of the form X → β where β is a tree of T (F ∪ N )
and X ∈ N . Given a regular tree grammar G = (S,N ,F , R) , the
derivation relation→G associated toG is a relation on pairs of terms
of T (F ∪ N ) such that s →G t if and only if there is a rule X →
α ∈ R and there is a context C such that s = C[X] and t = C[α].
The language generated by G, denoted by L(G) is a subset of T (F)
which can be reached by successive derivations starting from the start
symbol, i.e. L(G) = {s ∈ T | S →+ s} with →+ the transitive
closure of →. We write → instead of →G when the grammar G is
clear from the context. For further details, we refer the reader, for
instance, to [5].

3 Uniform Interpolation

Formally, the term uniform interpolation is defined based on the no-
tion of inseparability. Two TBoxes, T1 and T2, are inseparable w.r.t.
a signature Σ if they have the same Σ-consequences, i.e., conse-
quences whose signature is a subset of Σ. Depending on the par-
ticular application requirements, the expressivity of those Σ conse-
quences can vary from subsumption queries and instance queries to
conjunctive queries. In this paper, we investigate uniform interpo-
lation based on concept inseparability of general EL terminologies
defined analogously to previous work on inseparability, e.g., [8] or
[7], as follows:

Definition 1 Let T1 and T2 be two general EL TBoxes and Σ a
signature. T1 and T2 are concept-inseparable w.r.t. Σ, in symbols
T1 ≡cΣ T2, if for all EL concepts C,D with sig(C) ∪ sig(D) ⊆ Σ
holds T1 |= C v D, iff T2 |= C v D.

Given a signature Σ and a TBox T , the aim of uniform interpolation
is to determine a TBox T ′ with sig(T ′) ⊆ Σ such that T ≡cΣ T ′. T ′
is also called a uniform EL Σ-interpolant of T . In practise, uniform
interpolants are required to be finite, i.e., expressible by a finite set of

finite axioms using only the language constructs of EL. As demon-
strated by the following example, in the presence of cyclic concept
inclusions, a finite uniform EL Σ-interpolant might not exist for a
particular TBox T and a particular Σ.

Example 1 Consider uniform interpolants of the TBox T = {A′ v
A,A v A′′, A v ∃r.A, ∃s.A v A}. w.r.t. Σ = {s, r, A′, A′′}.
We obtain an infinite chain of consequences A′ v ∃r.∃r.∃r....A′′
and ∃s.∃s.∃s....A′ v A′′ containing nested existential quantifiers
of unbounded depth.

It is interesting that, while deciding the existence of uniform inter-
polants in EL [9] is one exponential less complex than the same de-
cision problem for the more complex logic ALC [11], the size of
uniform interpolants remains triple-exponential due to the unavail-
ability of disjunction. We demonstrate that this is in fact the lower
bound by the means of the following example (obtained by a slight
modification of the corresponding example given in [10] originally
demonstrating a double exponential lower bound in the context of
conservative extensions).

Example 2 The EL TBox Tn for a natural number n is given by

A1 v X0 u ... uXn−1 (1)

A2 v X0 u ... uXn−1 (2)

uσ∈{r,s}∃σ.(Xi uX0 u ... uXi−1) v Xi i < n (3)

uσ∈{r,s}∃σ.(Xi uX0 u ... uXi−1) v Xi i < n (4)

uσ∈{r,s}∃σ.(Xi uXj) v Xi j < i < n (5)

uσ∈{r,s}∃σ.(Xi uXj) v Xi j < i < n (6)

X0 u ... uXn−1 v B (7)

If we now consider sets Ci of concept descriptions inductively de-
fined by C0 = {A1, A2},Ci+1 = {∃r.C1 u ∃s.C2 | C1, C2 ∈ Ci},
then we find that |Ci+1| = |Ci|2 and consequently |Ci| = 2(2i).
Thus, the set C2n−1 contains triply exponentially many different con-
cepts, each of which is doubly exponential in the size of Tn (intu-
itively, we obtain concepts having the shape of binary trees of expo-
nential depth, thus having doubly exponentially many leaves, each of
which can be endowed with A1 or A2, which gives rise to triply ex-
ponentially many different such trees). It is straightforward to check
that for each concept C ∈ C2n−1 holds Tn |= C v B and that
there cannot be a smaller uniform interpolant w.r.t. the signature
Σ = {A1, A2, B, r, s} than the one containing all these GCIs (for a
proof, see Appendix B).

Hence we have found a class Tn of TBoxes giving rise to uniform
interpolants of triple-exponential size in terms of the original TBox.
In the following, we show that this is also an upper bound by pro-
viding a procedure for computing uniform interpolants with a triple-
exponentially bounded output.

4 Normalization
Similarly to other proof-theoretic approaches [1, 6, 7], we will make
use of normalizations that restrict the syntactic form of TBoxes.
We decompose complex axioms into syntactically simpler ones. The
decomposition is realized recursively by replacing sub-expressions
C1 u ... u Cn and ∃r.C by fresh concept symbols until each axiom
in the TBox T is one of {A v B,A ≡ B1 u ... u Bn, A ≡ ∃r.B},
where A,B,Bi ∈ sigC(T ) ∪ {>} and r ∈ sigR(T ). For this pur-
pose, we introduce a minimal required set of fresh concept symbols



ND and the corresponding definition axioms {A′ ≡ C′ | A′ ∈ ND}
for eachA′ ∈ ND and the corresponding conceptC′ replaced byA′.

In what follows, we assume that knowledge bases are normalized
and refer to sigC(T ) ∪ ND as sigC(T ). Since concept symbols in
ND are fresh, they do not appear in Σ. W.l.o.g., in what follows we
assume that EL concepts do not contain any equivalent concepts in
conjunctions and that equivalent concept symbols have been replaced
by a single representative of the corresponding equivalence class.
The following lemma postulates the close semantic relation between
a TBox and its normalization.

Lemma 1 Any EL TBox T can be extended into a normalized TBox
T ′ such that each model of T ′ is a model of T and each model of T
can be extended into a model of T ′.

Proof Sketch. All concepts in ND are defined, i.e., their meaning is
uniquely determined by the meaning of subconcepts (concepts that
occur in T ) of the original TBox T . 2

The following lemma motivates the usefulness of the normaliza-
tion for the computation of uniform interpolants. In particular, it al-
lows us to restrict the information necessary for the uniform interpo-
lation to the sets of subsumers and subsumees of all atomic concepts
in the TBox.

Lemma 2 Let T be normalized EL TBox and C,D two EL con-
cepts with sig(C) ∪ sig(D) ⊆ sig(T ) such that T |= C v D.
For any A ∈ sigC(T ), let Pre(A) = {M ⊆ sigC(T ) | T |=d
Bi∈M Bi v A}. W.l.o.g., assume that

C =
l

1≤j≤n

Aj u
l

1≤k≤m

∃rk.Ek

for Aj ∈ sigC(T ) and rk ∈ sigR(T ), Ek EL concepts with
sig(Ek) ⊆ sig(T ) for 1 ≤ k ≤ m. For all conjuncts Di of D,
the following is true: If Di ∈ sigC(T ), there is a set M ∈ Pre(Di)
of atomic concepts such that for each element B of M holds at least
one of the conditions [A1]-[A2]:

(A1) There is an Aj in C such that Aj = B.
(A2) There are rk, Ek and there exists B′ ∈ sigC(T ) such that T |=

Ek v B′ and B ≡ ∃rk.B′ ∈ T .

If Di = ∃r′.D′ for r′ ∈ sigR(T ) and D′ an EL concept , at least
one of the conditions [A3]-[A4] holds:

(A3) There are rk, Ek such that rk = r′ and T |= Ek v D′.
(A4) There isB ∈ sigC(T ) such that T |= B v ∃r′.D′, T |= C v B.

Proof. The proof is based on a Gentzen-style calculus for EL com-
plete for subsumptions between arbitrary EL concepts shown in Fig.
1. We consider all rules, that could have been the last rule applied in
order to derive the above sequent and show the lemma by induction
on the length of the proof. 2

Lemma 2 allows us, on the one hand, to prove the completeness
of grammars introduced in the next section, and, on the other hand,
to show that the TBox computed in Section 6 by combining sub-
sumees and subsumers into subsumption axioms indeed entails all
Σ-consequences of T .

5 Grammar Representation of Subsumees and
Subsumers

In order to obtain a finite uniform interpolant from the infinite sets
of subsumees and subsumers, a finite representation for these sets is

C v C (AX)
C v > (AXTOP)

D v E
C uD v E (ANDL)

C v E C v D
C v D u E (ANDR)

C v D
∃r.C v ∃r.D (EX)

C v E E v D
C v D (CUT)

Figure 1. Gentzen-style proof system for general EL terminologies.

required. In this section, we show how, for a signature Σ, the sets of
Σ-subsumees and Σ-subsumers of each atomic concept in a normal-
ized EL TBox T can be described as languages generated by regular
tree grammars on ranked unordered trees with finite sets of deriva-
tion rules later on transformed into a finite uniform interpolant. For
the definition of the grammars, we uniquely represent each atomic
concept A ∈ sigC(T ) by a non-terminal nA (and denote the set
of all non-terminals by N T = {nx|x ∈ sigC(T ) ∪ {>}}). In
what follows, we use the ranked alphabet F = (sigC(T ) ∩ Σ) ∪
{>} ∪ {∃r | r ∈ sigR(T ) ∩ Σ} ∪ {ui | i ≤ n}, where atomic
concepts in sigC(T ) ∩ Σ are constants, ∃r for r ∈ sigR(T ) ∩ Σ
are unary functions and ui are functions of the arity i bounded by
n = |sigC(T )| · (|sigR(T )| + 1), i.e., the number of all possible
simple concepts in T (atomic concepts and all existential restrictions
on atomic concepts). The restriction to the maximum arity of n is
w.l.o.g., since we can always split longer conjunctions into a nested
conjunction with at most n elements in each subexpression. In the
following, it will be convenient to simply write u if the arity of the
corresponding function is clear from the context. Clearly, every EL
concept C with sig(C) ⊆ Σ and at most n conjuncts in each subex-
pression has a unique representation by the means of the above func-
tions. We denote such a term representation of C using F by tC .

In what follows, we use a substituting function σT ,F :
{C | sig(C) ⊆ sig(T )} → T (F ,N T ) by σT ,F (C) =
tC{n>/>, nB1/B1, ..., nBn/Bn}, where B1, ..., Bn are all atomic
subexpressions of C. Note that σT ,F is injective, therefore, its in-
verse is also a function. If the TBox and the set of non-terminals are
clear from the context, we will denote such a representation of a con-
ceptC simply by σ(C), and its inverse by σ−(t) for t ∈ T (F ,N T ).
In the following we will assume σ−(t) to be extended to partially
ground terms and ground terms.

Definition 2 Let T be a normalized EL TBox, Σ a signature. Let
PostBase(A) = {A′ ∈ sigC(T ) ∪ {>} | T |= A v A′} ∪ {∃r.A′ |
A′ ∈ sigC(T )∪ {>}, T |= A v ∃r.A′, r ∈ Σ}. Further, let Rw be
given by

(GL1) n> → u(n>, n>)
(GL2) n> → ∃r(n>) for all r ∈ sigR(T ) ∩ Σ,
(GL3) n> → B for all B ∈ Σ ∪ {>}

and for each B ∈ sigC(T ):

(GL4) nB → u(nB , n>)
(GL5) nB → B if B ∈ Σ
(GL6) nB → nB′ for all B′ ∈ sigC(T ) such that T |= B′ v B
(GL7) nB → u(nB′1 , ..., nB′n ) for all B′1, ..., B

′
n with B ≡ B′1 u

... uB′n ∈ T



(GL8) nB → ∃r(nB′) for all B′ with B ≡ ∃r.B′ ∈ T and r ∈
sigR(T ) ∩ Σ.

Let Rv be given by:

(GR1) n> → >

and for all B ∈ sigC(T ):

(GR2) nB → B if B ∈ Σ
(GR3) nB → σ(C) for all C ∈ PostBase(B)

For each A ∈ sigC(T ), the regular tree grammar Gw(T ,Σ, A)
is then given by (nA,N T ,F , Rw), and the regular tree grammar
Gv(T ,Σ, A) is given by (nA,N T ,F , Rv).

We denote the set of tree grammars {Gw(T ,Σ, A) | A ∈ sigC(T )}
by Gw(T ,Σ) and the set {Gv(T ,Σ, A) | A ∈ sigC(T )} by
Gv(T ,Σ). For the construction of grammars the following result
holds.

Theorem 1 Let T be a normalized EL TBox, Σ a signature.
Gw(T ,Σ) and Gv(T ,Σ) can be computed from T in polynomial
time and are polynomially bounded in the size of T .

Proof Sketch. The polynomially bounded size holds basically due
to the polynomial number of simple concept subsumptions and the
polynomial time due to tractable reasoning in EL[1]. 2

The following example demonstrates the grammar construction.

Example 3 For T and Σ from Example 1, we obtain a normalized
TBox T ′ = {A′ v A,A v A′′, A v B,B ≡ ∃r.A,B′ ≡
∃s.A,B′ v A}, which yields the following set of transitions for
Rw:

n> → u(n>, n>) n> → > (8)
n> → ∃r(n>) n> → ∃s(n>) (9)

n> → A′′ n> → A′ (10)
nA→u (nA, n>) nB→u (nB , n>) (11)

nA′′→u (nA′′ , n>) nA′→u (nA′ , n>) (12)
nA′′→nA′ nA→nB′ (13)
nA′′→nA nA→nA′ (14)
nA′′→nB′ nA′′→A′′ (15)
nB→nA nA′→A′ (16)

nB′→∃s(nA) nB→∃r(nA) (17)
nB→nA′ (18)

For Rv, we obtain

n> → > nA′′→n> (19)
nA→n> nA′→n> (20)
nB→n> nA′→nB (21)
nA→nA′′ nA′→nA (22)
nA→nB nA′→nA′′ (23)
nB′→nA nB′→nA′′ (24)
nA′′→A′′ nA′→A′ (25)

nB′→∃s(n>) nB→∃r(n>) (26)
nB′→∃s(nA) nB→∃r(nA) (27)

By applying the rules nA→nB′ , nB′→∃s(nA) contained in Rw n
times, we obtain a term ∃s(∃s(...∃s(A))) of depth n, which repre-
sents the corresponding subsumee of A of the same depth.

We enrich the rules as shown by the following definition in order
to extend the generated languages by associative variants of concept

expressions. For this purpose, we consider subsumees and subsumers
of each atomic concept having the form of simple conjunctions, i.e.,
conjunctions of simple concepts. While, in the case of subsumees
(Pre(A)) it is sufficient to consider atomic concepts only, in the case
subsumers (Post(A)), we additionally have to take into account ex-
istential restrictions with atomic concepts to account for the corre-
sponding associative variants.

Definition 4 Let T be a normalized EL TBox and A ∈ sigC(T ).
Let PostBase(A) be defined as in Definition 2.

• Pre(A) = {M ⊆ sigC(T ) | T |=
d
Bi∈M Bi v A}.

• Post(A) = 2PostBase(A).
• Rassoc(Rw) = Rw ∪ {nB → u(nB′1 , ..., nB′n ) | B ∈

sigC(T ),M ∈ Pre(B), {B′1, ..., B′n} = M}
• Rassoc(Rv) = Rv ∪ {nB → u(σ(C′1), ..., σ(C′n)) | B ∈

sigC(T ),M ∈ Post(B), {C′1, ..., C′n} = M}

Since sig(T ) is finite, all elements of Pre and Post can be effec-
tively computed (in exponential time due to the exponential number
of elements and tractable reasoning in EL). In the following, we as-
sume the grammars to be extended by the associative variants.

Grammar Properties
The following theorem states that the grammars derive only terms
representing Σ-subsumees and Σ-subsumers of the corresponding
atomic concept.

Theorem 2 Let T be a normalized EL TBox, Σ a signature and
A ∈ sigC(T ).

1. For each t ∈ L(Gw(T ,Σ, A)), there is a concept C with tC = t
and sig(C) ⊆ Σ such that T |= C v A.

2. For each t ∈ L(Gv(T ,Σ, A)), there is a concept C with tC = t
and sig(C) ⊆ Σ such that T |= A v C.

Proof Sketch. The theorem is proved by induction on the maximal
nesting depth of functions in t using the rules given in Definition 2.
2

For the completeness of the grammar generating subsumees, we
only guarantee to capture all associative variants of concepts not be-
ing obtained by adding arbitrary conjuncts to arbitrary subexpres-
sions (ANDL-weakening, Figure 1). The reason for this limitation
is that, in general, adding arbitrary conjuncts to arbitrary subex-
pressions allows us to obtain subsumees being conjunctions of un-
bounded size, which would cause the corresponding language to con-
tain terms with u-functions of unbounded arity and make the def-
inition of the grammar unnecessary complex. We show in the next
section that the subset of subsumees covered by the grammar is suf-
ficient to preserve all Σ subsumptions.

Theorem 3 Let T be a normalized EL TBox, Σ a signature and
A ∈ sigC(T ).

1. For each C with sig(C) ⊆ Σ such that T |= C v A
there is a concept C′ such that C can be obtained from C′

by adding arbitrary conjuncts to arbitrary subexpressions and
tC′ ∈ L(Gw(T ,Σ, A)).

2. For each D with sig(D) ⊆ Σ such that T |= A v D holds:
tD ∈ L(Gv(T ,Σ, A)).

Proof Sketch. The theorem is proved by induction on the role depth
of C using Lemmas 2 and 5 in addition to Definitions 2, 4. 2



6 From Grammars to Uniform Interpolants
For the construction of a uniform interpolant, we make use of the re-
sults stated in Lemma 2, which, in combination with the introduced
normalization imply that, knowing the subsumees and subsumers of
atomic concepts in normalized terminologies is sufficient to derive
all subsumptions between any complex concepts. This justifies the
computation of the uniform interpolant based on the grammars intro-
duced in the last section. In order to obtain a corresponding TBox
from a pair of grammars, for all nB occurring on the right-hand
sides of the transition rules must hold: B ∈ Σ ∪ {>}. If the lat-
ter is the case, we can apply the inverse substitution σ−(t) to ob-
tain axioms defining subsumers and subsumees of atomic concepts.
Otherwise, we first need to eliminate all non-terminals not from
NΣ = {nB | B ∈ Σ ∪ {>}} within the right-hand sides of the
corresponding rules. In principle, we can substitute any such non-
terminal N 6∈ NΣ by the right-hand sides of the corresponding rules
for N without any change to the generated language. However, in
the general case, such a sequence of substitutions does not have to be
finite. In the following, we investigate the bounds for the number of
such substitution steps required to obtain a uniform interpolant.

For a conceptC, let d(C) denote the maximal role depth withinC.
For a TBox T , d(T ) = max{d(C) | C is a subconcept of T }. The
following lemma postulates a bound on the role depth of minimal
uniform EL interpolants:

Lemma 3 Let T be a normalized EL TBox, Σ a signature. Let
def(T ) be the number of definitions in T . The following statements
are equivalent:

1. There exists a uniform EL Σ-interpolant of T .
2. There exists a uniform EL Σ-interpolant T ′ of T and d(T ′) ≤

24·(|sigC(T )|+def(T )) + 1.

Proof Sketch. In a normalized TBox T , the number of subconcepts2

is |sigC(T )|+ def(T ). Therefore, we can replace the last statement
of Condition 2 by d(T ′) ≤ 22·n + 1, where n is twice the number
of subconcepts within T . Then, the lemma follows from Conditions
(1) and (4) of Lemma 55 in [9]. 2

We can eliminate all non-terminals not fromNΣ within the given
role depth by replacing them in each rule by the corresponding right-
hand sides, thereby obtaining a set of grammars that can be trans-
formed into a uniform EL Σ-interpolant using the inverse substitu-
tion σ−(t).

Definition 5 For a normalized EL TBox T and a signature Σ, let

• Rw0 = Rw and Rv0 = Rv.
• R./i+1 = {N → t(t′1, ..., t′n) | N → t(N1, ..., Nn) ∈ R./i , 1 ≤
j ≤ n, t′j = Nj if Nj ∈ NΣ and t′j ∈ {t′ | Nj → t′ ∈ R./0 } for
Nj 6∈ NΣ} with ./∈ {w,v}.

For an A ∈ sigC(T ), let Gwi = (nA,N T ,F , Rwi ) and Gvi =
(nA,N T ,F , Rvi ). Gwi (T ,Σ) is then given by {Gwi (T ,Σ, A) | A ∈
sigC(T )} and Gvi (T ,Σ) by {Gvi (T ,Σ, A) | A ∈ sigC(T )}.

Given a pair of grammar sets
Gw

24·(|sigC (T )|+def(T ))+1
(T ,Σ),Gv

24·(|sigC (T )|+def(T ))+1
(T ,Σ) for

a TBox T and a signature Σ, we can compute a uniform EL
Σ-interpolant of T as follows.

2 In a conjunction, only the concepts not being a conjunction itself are con-
sidered as proper subconcepts. Therefore, a conjunction with n elements
has n proper subconcepts.

Definition 6 Let T be a normalized EL TBox, Σ a sig-
nature and G1 = Gw

24·(|sigC (T )|+def(T ))+1
(T ,Σ),G2 =

Gv
24·(|sigC (T )|+def(T ))+1

(T ,Σ) with R1 = Rw
24·(|sigC (T )|+def(T ))+1

and R2 = Rv
24·(|sigC (T )|+def(T ))+1

. Let the sets
UIG1,Σ, UIG2,Σ, UIG1,G2,Σ be given by

• UIG1,Σ = {σ−(t) v A | A ∈ Σ, nA → t ∈ R1, t ∈
T (F ,NΣ)},

• UIG2,Σ = {A v σ−(t) | A ∈ Σ, nA → t ∈ R2, t ∈
T (F ,NΣ)},

• UIG1,G2,Σ = {σ−(t1) v σ−(t2) | N 6∈ NΣ, t1, t2 ∈
T (F ,NΣ), N → t1 ∈ R1, N → t2 ∈ R2}.

Then, an EL TBox UI(G1,G2,Σ) is given by UI(G1,G2,Σ) =
UIG1,Σ ∪ UIG2,Σ ∪ UIG1,G2,Σ.

Clearly, the construction terminates, if G1 and G2 are finite. The size
of the resulting TBox UI(G1,G2,Σ) is bounded polynomially by
the size of G1,G2. Moreover, sig(UI(G1,G2,Σ)) ⊆ Σ, since each
t, t1, t2 ∈ T (F ,NΣ), σ−(t) ⊆ sig(T ) and F ∩ (sig(T ) \ Σ) = ∅.
We obtain the following result concerning the size of uniform EL
Σ-interpolants of T .

Theorem 4 Let T be an EL TBox and Σ a signature. The following
statements are equivalent:

1. There exists a uniform EL Σ-interpolant of T .
2. UI(G1,G2,Σ) ≡cΣ T
3. There exists a uniform EL Σ-interpolant T ′ with |T ′| ∈
O(222|T |

).

Proof. The non-trivial parts of the proof are implications 1⇒ 2 and
2⇒ 3.

1⇒ 2: By Definition 1, the statement UI(G1,G2,Σ) ≡cΣ T con-
sists of two directions: (1) for all EL conceptsC,D with sig(C)∪
sig(D) ⊆ Σ holds UI(G1,G2,Σ) |= C v D ⇒ T |= C v D
and (2) for all EL conceptsC,D with sig(C)∪sig(D) ⊆ Σ holds
UI(G1,G2,Σ) |= C v D ⇐ T |= C v D.

(1) The first direction follows from Theorem 2 and Definition 6,
which does not introduce any consequences not being conse-
quences of T .

(2) For the second direction, assume that there exists a uni-
form EL Σ-interpolant of T . Then, by Lemma 3, there ex-
ists a uniform EL Σ-interpolant T ′ of T with d(T ′) ≤
24·(|sigC(T )|+def(T )) + 1. It is sufficient to show that for each
C v D ∈ T ′ holds UI(G1,G2,Σ) |= C v D. Assume that
C v D ∈ T ′. Then, T |= C v D and we prove by induc-
tion on maximal role depth of C,D that also UI(G1,G2,Σ) |=
C v D. W.l.o.g., let D =

d
1≤i≤lDi and

C =
l

1≤j≤n

Aj u
l

1≤k≤m

∃rk.Ek

with Aj ∈ Σ∩ sigC(T ) for 1 ≤ j ≤ n, rk ∈ Σ∩ sigR(T ) for
1 ≤ k ≤ m andEk with 1 ≤ k ≤ m a set of EL concepts such
that sig(Ek) ⊆ Σ. Clearly, T |= C v D, iff T |= C v Di for
all i with 1 ≤ i ≤ l.
• If Di = A ∈ Σ, then, it follows from Theorem 3

that there is a concept C′ such that C can be obtained



from C′ by adding arbitrary conjuncts to arbitrary subex-
pressions with tC′ ∈ L(Gw(T ,Σ, A)). Since d(C) ≤
24·(|sigC(T )|+def(T )) + 1 and C has been obtained from
C′ by weakening, also d(C′) ≤ 24·(|sigC(T )|+def(T )) + 1.
Therefore, tC′ ∈ L(Gw

24·(|sigC (T )|+def(T ))+1
(T ,Σ, A)), and

UI(G1,G2,Σ) |= C v Di.
• If Di = ∃r.D′ for some r,D′, then, by Lemma 2, one of the

following is true:
(A3) There are rk, Ek in C such that rk = r and T |=

Ek v D′. Since d(Ek) < 24·(|sigC(T )|+def(T )) + 1 and
d(D′) < 24·(|sigC(T )|+def(T )) + 1, by induction hypoth-
esis holds UI(G1,G2,Σ) |= Ek v D′. It follows that
UI(G1,G2,Σ) |= ∃rk.Ek v Di and UI(G1,G2,Σ) |=
C v Di.

(A4) There is B ∈ sigC(T ) of T such that T |= B v ∃r.D′ and
T |= C v B. Then,

– it follows from Theorem 3 that there is a concept C′

such that C can be obtained from C′ by adding arbi-
trary conjuncts to arbitrary subexpressions with tC′ ∈
L(Gw(T ,Σ, B)). Since d(C) ≤ 24·(|sigC(T )|+def(T )) + 1
and C has been obtained from C′ by weakening, also
d(C′) ≤ 24·(|sigC(T )|+def(T )) + 1. Therefore, tC′ ∈
L(Gw

24·(|sigC (T )|+def(T ))+1
(T ,Σ, B))

– it follows from Theorem 3 that t∃r.D′ ∈ L(Gv(T ,Σ, B)).
Since d(∃r.D′) ≤ 24·(|sigC(T )|+def(T )) + 1, it follows that
t∃r.D′ ∈ L(Gv

24·(|sigC (T )|+def(T ))+1
(T ,Σ, B)).

Therefore, by Definition 6, UI(G1,G2,Σ) |= C′ v ∃r.D′,
and UI(G1,G2,Σ) |= C v Di.

2⇒ 3: Observe that G1,G2 have |sigC(T )| non-terminals and
at most 22·n + |sigC(T )| outgoing transitions for each non-
terminal, n the maximal arity of u, each of which has at most n
occurring non-terminals. Let leavesi be the maximal number
of non-terminals N 6∈ NΣ occurring in a transition after step
i and trani the maximal number of outgoing transitions for
a non-terminal after step i. Then, tran0 = 22·n + |sigC(T )|
and leaves0 = n. Further, leavesi+1 = n · leavesi, i.e.,
leavesi = ni+1. For each N 6∈ NΣ, there are at most
22·n + |sigC(T )| possible replacing transitions, therefore, for
each t ∈ Ri, there are (22·n + |sigC(T )|)leavesi+1 possibilities
to replace all non-terminals N 6∈ NΣ by the corresponding
transitions from R0. We obtain trani+1 = trani · (22·n +
|sigC(T )|)leavesi+1 , i.e., trani ≤ (22·n + |sigC(T )|)i·n

i+2
.

For i = 24·(|sigC(T )|+def(T )) + 1, we obtain leavesi =
n24·(|sigC (T )|+def(T ))+1 ∈ O(22|T |) and trani ≤ (22·n +

|sigC(T )|)(24·(|sigC (T )|+def(T ))+1)·n(24·(|sigC (T )|+def(T ))+3)
∈

O(222|T |
).

These complexity results correspond to the size and number of ax-
ioms in Example 2. 2

7 Summary and Future Work
In this paper, we provide an approach to computing uniform inter-
polants of general EL terminologies based on proof theory and reg-
ular tree languages. Moreover, we show that, if a finite uniform EL
interpolant exists, then there exists one of at most triple exponential
size in terms of the original TBox, and that, in the worst-case, no
shorter interpolant exists, thereby establishing the triple exponential
tight bounds.

Due to the triple exponential blowup, algorithms for testing the
appropriate size of uniform interpolants in addition to their existence
would be of importance for applications in practice. While, in prin-
ciple, expressing uniform interpolants in EL extended with fixpoint
constructs [13] allows us to avoid both problems, the non-existence
and the triple exponential blowup, for practical scenarios, reducing
the forgotten signature in a reasonable way would be an interesting
alternative, for instance, for applications as visualization of depen-
dencies or ontology reuse.

Moreover, given the considerable effect of structure sharing elim-
ination on the size of a TBox, it would be interesting to investigate,
to what extent the structure sharing within existing large ontologies
can be intensified in order to make reasoning more efficient.
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A Proof Theory
The structure of the grammars has been derived based on Proof The-
ory. The used Gentzen-style proof system shown below has been de-
rived similarly to the proof system for Horn-SHIQ terminologies
presented in [6]. In contrast to the proof system by Kazakov, which
is complete for classification only and based on a normalization in-
volving inverse roles (e.g., encoding all ∃r.A v B as A v ∀r−.B),
the rules presented below fit our normal form and are complete for
arbitrary EL GCIs.

C v C (AX)
C v > (AXTOP)

D v E
C uD v E (ANDL)

C v E C v D
C v D u E (ANDR)

C v D
∃r.C v ∃r.D (EX)

C v E E v D
C v D (CUT)

Figure 2. Gentzen-style proof system for general EL terminologies.

Lemma 4 (Soundness and Completeness) Let T be an arbitrary
EL TBox, C,D EL concepts. Then T |= C v D, iff T ` C v D.

Proof. While the soundness of the proof system (if-direction) can
be easily checked for each rule, the proof of completeness is more
sophisticated. In order to show the only-if-direction of the lemma,
we construct a model I for T wherein only the GCIs derivable from
T are valid. This model is constructed as follows:

• ∆I contains an element δC for every EL concept expression C
• AI := {δC ∈ ∆I |T ` C v A, }
• rI := {(δC , δD) ∈ ∆I ×∆I |T ` C v ∃r.D, r ∈ sigR(T )}

We will show that the following claim holds for I:
For all δE ∈ ∆I and EL concepts F holds δE ∈ F I iff
T ` E v F . (*)

This claim can be exploited in two ways: First, we use it to show
that I is indeed a model of T . Let C v D ∈ T and consider an
arbitrary δG ∈ ∆I with δG ∈ CI . Via (*) we obtain T ` G v C
on the other hand, T ` C v D due to C v D ∈ T . Thus we
can derive T ` G v D via (CUT) and consequently, applying (*)
again, we obtain δG ∈ DI . Thereby modelhood of I wrt. T has been
proven.

Second, we use (*) to show that I is a counter-model for all GCIs
not derivable from T as follows: Assume I |= C v D but T 6` C v
D. Then ∆I contains the element δC . From T ` C v C and (*) we
derive δC ∈ CI , from T 6` C v D and (*) we obtain δC 6∈ DI .
Hence we getCI 6⊆ DI and therefore I 6|= C v D, a contradiction.

It remains to prove (*). This is done by an induction on the maxi-
mal nesting depth of the operators u and ∃. There are two base cases:

• for F = >, the claim trivially follows from (AXTOP),
• for F ∈ sigC(T ), it is a direct consequence of the definition.

we now consider the cases where F is a complex concept expression

• for F = C1 u . . . u Cn, we note that δE ∈ F I exactly if δE ∈
CIi for all i ∈ {1 . . . n}. By induction hypothesis, this means
T ` E v Ci for all i ∈ {1 . . . n}. Finally, observe that {E v
Ci | 1 ≤ i ≤ n} and E v C1 u . . .uCn can be mutually derived
from each other: (for “`” this is a straightforward consequence of

(ANDR), for “a” note that we can derive ∅
AX

` Ci v Ci
ANDL∗

`
C1 u . . . u Cn v Ci whence together with E v C1 u . . . u Cn
follows E v Ci by (CUT).

• for F = ∃r.G, we prove the two directions separately. First as-
suming δE ∈ F I we must find (δE , δH) ∈ rI for some H with
δH ∈ GI . This implies both T ` E v ∃r.H (by definition)
and T ` H v G (via the induction hypothesis). From the latter,
we can deduce T ` ∃r.H v ∃r.G by (EX) and consequently
T ` E v ∃r.G. For the other direction, note that by definition,
T ` E v ∃r.G implies (δE , δG) ∈ rI . On the other hand, we
get T ` G v G by (AX) and therefore δG ∈ GI by the induction
hypothesis which yields us δE ∈ F I . 2

B Proof of Lower Bound
Theorem 5 There exists a sequence of (Tn) of EL TBoxes and a
fixed signature Σ such that

• the size of Tn is upper-bounded by a polynomial in n and
• the size of the smallest uniform interpolant of Tn w.r.t. Σ is lower-

bounded by 2(2(2n−1)).

Proof Sketch. For n a natural number, let the EL TBox Tn be given
by

A1 v X0 u ... uXn−1 (28)

A2 v X0 u ... uXn−1 (29)

uσ∈{r,s}∃σ.(Xi uX0 u ... uXi−1) v Xi i < n (30)

uσ∈{r,s}∃σ.(Xi uX0 u ... uXi−1) v Xi i < n (31)

uσ∈{r,s}∃σ.(Xi uXj) v Xi j < i < n (32)

uσ∈{r,s}∃σ.(Xi uXj) v Xi j < i < n (33)

X0 u ... uXn−1 v B (34)

Obviously, the size of Tn is polynomially bounded by n. We now
consider sets Ck of concept descriptions inductively defined by C0 =
{A1, A2} and Ck+1 = {∃r.C1 u ∃s.C2 | C1, C2 ∈ Ck}. We find
that |Ck+1| = |Ck|2 and consequently |Ck| = 2(2k). Thus, the set
C2n−1 contains triply exponentially many different concepts, each of
which is doubly exponential in the size of Tn.

Obviously, for any k, every concept description from Ck uses only
signature elements from A1, A2, r, s.

It is rather straightforward to check that Tn |= C v B holds for
each concept C ∈ C2n−1: by induction on k, we can show that for
any C ∈ Ck with k < 2n holds Tn |= C v Y k0 u . . . u Y kn−1 with

Y ki =
{

Xi if b k2i cmod 2 = 1
Xi if b k2i cmod 2 = 0 ,

i.e., Y ki indicates the ith bit of the number k in binary encoding.
Then, C v B follows via the last axiom of Tn.

Toward the claimed triple-exponential lower bound, we now show
that every uniform interpolant of Tn for Σ = {A1, A2, B, r, s}must
contain for eachC ∈ C2n−1 a GCI of the formC v B′ withB′ = B
or B′ = B u F for some F (where we consider structural variants –



i.e., concept expressions which are equivalent w.r.t. the empty knowl-
edge base – as syntactically equal). Toward a contradiction, we as-
sume that this is not the case, i.e., there is a uniform interpolant T ′
and a C ∈ C2n−1 where C v B′ 6∈ T ′ for any B′ containing B as a
conjunct.

Yet, since C v B must be a consequence of T ′, there must be
a derivation of it. Looking at the derivation calculus from the last
section, the last derivation step must be (ANDL) or (CUT). We can
exclude (ANDL) since neither ∃r.C′ v B nor ∃s.C′ v B is the
consequence of T ′ for any C′ ∈ C2n−2 (which can be easily shown
by providing appropriate witness models of T ′). Consequently, the
last derivation step must be an application of (CUT), i.e., there must
be a concept E 6= C such that T ′ |= C v E and T ′ |= E v B.
Without loss of generality, we assume that we consider a derivation
where the branch of the derivation branch for C v E has minimal
depth.

We now distinguish two cases: either E contains B as a conjunct
or not.

• First we assume E = E′ u B, i.e. the CUT rule was used to
derive C v B from C v E′ u B and E′ u B v B. The former
cannot be contained in T ′ by assumption, hence it must have been
derived itself. Again, it cannot have been derived via (ANDL) for
the same reasons as given above, which again leaves (CUT) as the
only possible derivation rule for obtaining C v E′ u B. Thus,
there must be some conceptG with T ′ |= C v G and T ′ |= G v
E′ u B. Once more, we distinguish two cases: either G contains
B as a conjunct or not.

– If G contains B as a conjunct, i.e., G = G′ uB, the derivation
of C v E was not depth-minimal since there is a better proof
where C v B is derived from C v G′ u B and G′ u B v B
via (CUT). Hence we have a contradiction.

– IfG does not containB as a conjunct, the original derivation of
C v E was not depth-minimal since we can construct a better
one that derives C v B directly from C v G and G v B (the
latter being derived from G v E′ uB via (ANDR)).

• Now assume E does not contain B as a conjunct.
We construct (∆, ·I), the “characteristic interpretation” of C as
follows (ε denoting the empty word):

– ∆ = {w | w ∈ {r, s}∗, length(w) < 2n}
– We define an auxiliary function χ associating a concept expres-

sion to each domain element: we let χ(ε) = C and for every
wr,ws ∈ ∆ with χ(w) = ∃r.C1u∃s.C2, we let χ(wr) = C1
and χ(ws) = C2.

– the concepts and roles are interpreted as follows:

∗ AIι = {w | χ(w) = Aι} for ι ∈ {1, 2}
∗ BI = {ε}
∗ XIi = {w | b length(w)

2i cmod 2 = 0} for i < n

∗ Xi
I = {w | b length(w)

2i cmod 2 = 1} for i < n

∗ rI = {〈w,wr〉 | wr ∈ ∆}
∗ sI = {〈w,ws〉 | ws ∈ ∆}

It is straightforward to check that I is a model of Tn and that
ε ∈ CI . Consequently, due to our assumption, ε ∈ EI must
hold. Yet then, by construction,E can only be a proper “structural
superconcept” ofC, i.e., ∅ |= C v E and ∅ 6|= E v C must hold.
We now obtain Ẽ by enrichingE as follows: recursively, for every
subexpression G of E satisfying ∅ |= G v C′ for some C′ ∈ Ck

for some k < 2n, we substituteG byGuY k0 u . . .uY kn−1. Then,
Ẽ directly corresponds to a finite tree interpretation I′ which is
a model of Tn (following from structural induction on subexpres-
sions of Ẽ) and the root individual of which satisfies Ẽ but not C
(by assumption). Yet, the root individual cannot satisfy any other
concept expression C′′ from C2n−1 \ {C} either, since this, via
∅ |= E v C′′, would imply ∅ |= C v C′′ which is not the case
(by induction on k one can show that there cannot be a homo-
morphism between the associated tree interpretations of any two
distinct concepts from any Ck). In particular, we note that the root
individual of I′ also does not satisfy B. Thus, we have found a
model of Tn witnessing Tn 6|= E v B, contradicting our assump-
tion that T ′ |= E v B.

2

C Proof of Lemma 2

Here, we prove a stronger version of Lemma 2 (the difference is the
stronger statement [A4]), which is used only within the induction-
based proof of this lemma.

Let T be a normalized EL TBox and C,D two EL concepts with
sig(C) ∪ sig(D) ⊆ sig(T ) such that T |= C v D. For any A ∈
sigC(T ), let Pre(A) = {M ⊆ sigC(T ) | T |=

d
Bi∈M Bi v A}.

W.l.o.g., assume that

C =
l

1≤j≤n

Aj u
l

1≤k≤m

∃rk.Ek

for Aj ∈ sigC(T ) and rk ∈ sigR(T ), Ek EL concepts with
sig(Ek) ⊆ sig(T ) for 1 ≤ k ≤ m. Then, for all conjuncts Di of D,
the following is true: If Di ∈ sigC(T ), there is a set M ∈ Pre(Di)
of sigC(T ) concepts such that for each element B of M holds at
least one of the conditions [A1]-[A2]:

(A1) There is an Aj in C such that Aj = B.
(A2) There are rk, Ek and there exists B′ ∈ sigC(T ) such that T |=

Ek v B′ and B ≡ ∃rk.B′ ∈ T .

If Di = ∃r′.D′ for r′ ∈ sigR(T ) and D′ an EL concept , at least
one of the conditions [A3]-[A4] holds:

(A3) There are rk, Ek such that rk = r′ and T |= Ek v D′.
(A4) There is B ∈

nct such that T |= B v ∃r′.D′ and T |= C v B and forC v B
at least one of the conditions [A1]-[A2] holds.

Proof. We consider all rules, that could have been the last rule ap-
plied in order to obtain the above sequent and show by induction on
the length of the proof that, in each case, the lemma holds. Rules
AXTOP,AX are the basecase, since each proof begins with one of
them.

(C ./ D ∈ T ) In the case that C v D ∈ T or C ≡ D ∈ T , the
lemma holds due to the normalization. Axioms within T can have
the following form:

• C,D ∈ sigC(T ). In this case, {C} ∈ Pre(D). Therefore,
condition [A1] holds.

• C ∈ sigC(T ), D = D1 u ... u Dm with D1, ..., Dm ∈
sigC(T ). In this case, for each Di with 1 ≤ i ≤ m holds
{C} ∈ Pre(Di). Therefore, condition [A1] holds for each Di.



• C ∈ sigC(T ), D = ∃r′.D′ with D′ ∈ sigC(T ). This case
corresponds to the condition [A4].

(AXTOP) Since the conjunction is empty in caseD = >, the lemma
holds.

(AX) Since C = D, for each Di there is a conjunct Ci of C with
Ci = Di. If Di ∈ sigC(T ), condition [A1] of the lemma holds.
Otherwise, [A3].

(EX) If EX was the last applied rule, then Di = ∃rk.D′ and T `
Dk v D′. Therefore, [A3] of the lemma holds.

(ANDL) Assume that C′ u C′′ = C such that C′ v D is the an-
tecedent. By induction hypothesis, the lemma holds for C′ v D.
Since all conjuncts ofC′ are also conjuncts ofC, the lemma holds
also for C v D.

(ANDR) Assume that D = D1 uD2, therefore, C v D1 and C v
D2 is the antecedent. By induction hypothesis, the lemma holds
for both, C v D1 and C v D2. Since all conjuncts ofD are from
either D1 or D2, the lemma also holds for C v D.

(CUT) By induction hypothesis, the lemma holds for both elements
of the antecedent, C v C1 and C1 v D. W.l.o.g., assume that
C1 =

d
1≤p≤r Ap u

d
1≤s≤t ∃r

′
s.E
′
s.

1. Assume that Di ∈ sigC(T ). Then, there is M1 ∈ Pre(Di)
such that [A1] or [A2] holds for each B1 ∈M1.

A1 Assume that there is Ap with Ap = B1. Then, by induction
hypothesis, for C v Ap, there is Mp ∈ Pre(Ap) such that
[A1] or [A2] holds for each B′1 ∈ Mp. Let Mpart(B1) = Mp

and M1,A1 ⊆M1 be the set of all such B1. Then, let Mnew =
M1 \M1,A1 ∪

⋃
{Mpart(B1) | B1 ∈M1,A1}.

A2 Assume that for B1 there are r′s, E′s and there exists B′ ∈
sigC(T ) such that T |= E′s v B′ and B ≡ ∃r′s.B′ ∈ T .
Then, for C v ∃r′s.E′s can hold [A3] or [A4].

-(A3) There are rk, Ek such that rk = r′s and T |= Ek v E′s.
Then [A2] holds for C v B1, since T |= Ek v B′ and
B ≡ ∃rk.B′ ∈ T .

-(A4) There is B′′ ∈
nct such that T |= B′′ v ∃r′s.E′s, T |= C v B′′ and
there is a set M ′′ ∈ Pre(B′′) such that for each element
B′ of M ′′ holds at least one of the conditions [A1]-[A2]
w.r.t. C v B′. Let Mpart(B1) = M ′′ and M1,A4 ⊆ M1 be
the set of all such B1. Then, let M ′new = Mnew \M1,A4 ∪⋃
{Mpart(B1) | B1 ∈ (M1,A4 \M1,A1)}.

Clearly, M ′new ∈ Pre(Di) and [A1] or [A2] holds for each
B1 ∈M ′new w.r.t. C v B1, i.e., the lemma holds for C v Di.

2. Assume that Di = ∃r′.D′. Then, [A3] or [A4] hold.

A3 There are r′s, E′s such that r′ = r′s and T |= E′s v D′. Then,
for C v ∃r′s.E′s one of [A3], [A4] holds:

-(A3) There are rk, Ek such that rk = r′s and T |= Ek v E′s.
Then [A3] holds for C v Di, since T |= Ek v D′ and
rk = r′.

-(A4) There is B′′ ∈
nct such that T |= B′′ v ∃r′s.E′s, T |= C v B′′ and there
is a set M ′′ ∈ Pre(B′′) of sigC(T ) concepts such that for
each element B′ of M ′′ holds at least one of the conditions
[A1]-[A2] w.r.t. C v B′. Since T |= B′′ v Di, [A4] holds
for T |= C v Di.

A4 There is B ∈
nct such that T |= B v ∃r′.D′, T |= C1 v B and there is a
set M ′ ∈ Pre(B) such that for each element B′ of M holds
at least one of the conditions [A1]-[A2] w.r.t. C1 v B′. Then,

we have the same situation as above with two subsumptions
C v C1 and C1 v B, where B ∈ sigC(T ). Therefore, the
argumentation is the same as above implying that the claim of
the lemma holds for C v B, i.e., there is M1 ∈ Pre(B) such
that [A1] or [A2] holds for each B1 ∈ M1. Then, [A4] holds
for C v Di. 2

D Proofs for Section 5
Theorem 2
Let T be a normalized EL TBox, Σ a signature and A ∈ sigC(T ).

1. For each t ∈ L(Gw(T ,Σ, A)), there is a concept C with tC = t
and sig(C) ⊆ Σ such that T |= C v A.

2. For each t ∈ L(Gv(T ,Σ, A)), there is a concept C with tC = t
and sig(C) ⊆ Σ such that T |= A v C.

Proof. It is easy to check in Definition 2 that the grammars derive
only terms containing atomic concepts and roles from Σ, since nB →
B only if B ∈ Σ and nB → ∃r(t) only if r ∈ Σ. Therefore, for any
A ∈ sigC(T ) and any tC ∈ L(Gv(T ,Σ, A)) ∪ L(Gw(T ,Σ, A))
holds sig(C) ⊆ Σ.

1. Let t be a term such that t ∈ L(Gw(T ,Σ, A)). We prove the
theorem by induction on the maximal nesting depth of functions
in t.

• Assume that t is an atomic concept B. B can only be de-
rived from nA by n empty transitions (GL6), and, once nB is
reached, the rule (GL5). Let B1, ..., Bn be such that nA →
nB1 → ... → nBn → nB . Then, by Definition 2, for each
pair Bi, Bi+1 holds T |= Bi w Bi+1, for Bn, B holds
T |= Bn w B and for A,B1 holds T |= A w B1 . It fol-
lows that also T |= A w B, while t = tB .

• Assume that t = ∃r(t′) for some term t′. Then, the deriva-
tion of t from nA starts with n empty transitions (GL6) such
that nB′ for some B′ ∈ sigC(T ) is reached, and a subsequent
application of (GL8) such that nB for some B ∈ sigC(T ) is
reached. As argued above about the applications of empty tran-
sitions, T |= A w B′ holds. Moreover, By Definition 2 (GL8)
holds B′ ≡ ∃r.B ∈ T , and, therefore, T |= A w ∃r.B. Let
C′ be a concept with t′ = tC′ . Then, the theorem holds for C′

and nB by induction hypothesis, i.e., T |= B w C′. Therefore,
T |= A w ∃r.C′, while t = t∃r.C′ .

• Assume that t = u(t1, ..., tn) for a set of terms t1, ..., tn.
Then, the derivation of t from nA starts with n empty transi-
tions (GL6) such that nB′ for some B′ ∈ sigC(T ) is reached,
and a subsequent application of (GL7) or (GL4) such that,
for a set of concepts Bi ∈ sigC(T ) with 1 ≤ i ≤ n and
ti ∈ L(Gw(T ,Σ, nBi )), nBi is reached. As argued above
about the applications of empty transitions, T |= A w B′

holds.

(GL7) Let Ci be a concept with ti = tCi . By induction hy-
pothesis, T |= Bi w Ci. By Definition 2 or Definition 4,
T |= B′ w B1u...uBn. Therefore, T |= B′ w C1u...uCn
and T |= A w C1 u ... u Cn with t = tC1u...uCn .

(GL4) nB′ → u(nB′ , n>) ∈ Rw. Let C1 be the concept such
that t1 = tC1 and C2 such that t2 = tC2 . By induction hy-
pothesis, T |= B′ w C1. Therefore, T |= A w C1. Since
C1 u C2 is weaker than C1, it follows T |= A w C1 u C2,
while t = tC1uC2 .



2. The proof of soundness of Gv(T ,Σ)) can be done in the same
manner. Let t be a term such that t ∈ L(Gv(T ,Σ, A)). We prove
the theorem by induction on the maximal nesting depth of func-
tions in t.

• Assume that t is an atomic concept B. B can only be de-
rived from nA by n empty transitions (GR3), and, once nB is
reached, the rule (GR2). Let B1, ..., Bn be such that nA →
nB1 → ... → nBn → nB . Then, by Definition 2, for each
pair Bi, Bi+1 holds T |= Bi v Bi+1, for Bn, B holds
T |= Bn v B and for A,B1 holds T |= A v B1 . It fol-
lows that also T |= A v B with t = tB .

• Assume that t = ∃r(t′) for some term t′. Then, the deriva-
tion of t from nA starts with n empty transitions (GR3) such
that nB′ for some B′ ∈ sigC(T ) is reached, and a subsequent
application of a non-empty transition (GR3) such that nB for
some B ∈ sigC(T ) is reached. As argued above about the ap-
plications of empty transitions, T |= A v B′ holds. More-
over, By Definition 2 holds T |= B′ v ∃r.B, and, therefore,
T |= A v ∃r.B. Let C′ be a concept with t′ = tC′ . By induc-
tion hypothesis, T |= B v C′. Therefore, T |= A v ∃r.C′
with t = t∃r.C′ .

• Assume that t = u(t1, ..., tn) for a set of terms t1, ..., tn.
Then, the derivation of t from nA starts with n empty transi-
tions (GR3) such that nB′ for some B′ ∈ sigC(T ) is reached,
and a subsequent application of Definition 4 such that, for
a set of concepts Bi ∈ sigC(T ) with 1 ≤ i ≤ n and
ti ∈ L(Gv(T ,Σ, nBi )), nBi is reached. As argued above
about the applications of empty transitions, T |= A v B′

holds. Let C′i be a concept with ti = tC′
i
. By induction hypoth-

esis, T |= Bi v C′i. By Definition 4, T |= B′ v C′i. Then,
also T |= A v C′i, and, therefore, T |= A v C′1 u ... u C′n,
while t = tC′1u...uC

′
n

. 2

We start the proof of completness with a Lemma.

Lemma 5 Let T be a normalized EL TBox, A ∈ sigC(T ) and r ∈
sigR(T ). Let C an EL concept such that T |= A v ∃r.C. Then,
there are B1, B2 ∈ sigC(T ) with B1 ≡ ∃r.B2 ∈ T such that
T |= A v B1, T |= B2 v C.

Proof. Lemma 16 in [10] states that for a general EL TBox T with
T |= C1 v ∃r.C2, where C1, C2 are EL-concepts one of the fol-
lowing holds:

• there is a conjunct ∃r.C′ of C1 such that T |= C′ v C2;
• there is a subconcept ∃r.C′ of T such that T |= C1 v ∃r.C′ and
T |= C′ v C2;

The first condition does not hold in this lemma, since A ∈ sigC(T ).
Moreover, since in our case T is normalized, for each subconcept
∃r.C′ of T containing an existential restriction holds: there is an
atomic concept B2 ∈ sigC(T ) such that B2 = C′ and there is an
axiom of the form B1 ≡ ∃r.B2 ∈ T with B1 ∈ sigC(T ). Ad-
ditionally, from the above Lemma 16 follows T |= A v ∃r.B2
and T |= B2 v C. Since T |= B1 ≡ ∃r.B2, it follows that also
T |= A v B1. 2

We proceed with proving the two parts of Theorem 3. In what
follows, we say that a concept C can be obtained from a concept
C′ by weakening, meaning that C can obtained from C′ by adding
arbitrary conjuncts to arbitrary subexpressions.

Theorem 3

Let T be a normalized EL TBox, Σ a signature and A ∈ sigC(T ).

1. For each C with sig(C) ⊆ Σ such that T |= C v A
there is a concept C′ such that C can be obtained from C′

by adding arbitrary conjuncts to arbitrary subexpressions and
tC′ ∈ L(Gw(T ,Σ, A)).

2. For each D with sig(D) ⊆ Σ such that T |= A v D holds:
tD ∈ L(Gv(T ,Σ, A)).

Proof. Let T be a normalized EL TBox, Σ a signature and A ∈
sigC(T ). W.l.o.g., we can assume that there is a concept C with

C =
l

1≤j≤n

Aj u
l

1≤k≤m

∃rk.Ek

with Aj ∈ Σ for 1 ≤ j ≤ n, rk ∈ Σ for 1 ≤ k ≤ m and Ek with
1 ≤ k ≤ m a set of EL concepts such that sig(Ek) ⊆ Σ. Further,
w.l.o.g., we can assume that all Aj are pairwise different.

1. We show that, for each such general C with sig(C) ⊆ Σ and
T |= C v A, there is a concept C′ such that C can be obtained
fromC′ by weakening and tC′ ∈ L(Gw(T ,Σ, A)). We prove the
claim by induction of the role depth of C.

• Assume role depth = 0. Then C is a conjunction of atomic con-
cepts, i.e., m = 0 and C =

d
1≤j≤nAj . Then, by Lemma

2, there is a set M ′ ∈ Pre(A) of atomic concepts such that,
for each B ∈ M ′, there is an Aj with Aj = B. There-
fore, each B ∈ M ′ is in Σ. Let C′1 =

d
B∈M′ B. Since

M ′ ⊆ {A1, ...An}, C can be obtained from C′1 by weaken-
ing. By Definition 4, there is a rule nA → u(nB1 , ..., nBo )
with {B1, ..., Bo} = M ′. Since each B ∈ M ′ is in Σ, we
obtain by (GL5) nB → B. Since our grammars operate on
unordered trees, it follows that nA →+

Gw(T ,Σ,A)) tC′1 , i.e.,

tC′1 ∈ L(Gw(T ,Σ, A)) for any order of conjuncts in C′1.
Therefore, the theorem holds with C′ = C′1.

• Assume that the role depth is greater than 0. As in the case
above, there is a set M ′ ∈ Pre(A) of atomic concepts such
that, for each B ∈ M ′, [A1] or [A2] holds. Let M ′1 =
M ′ ∩ {A1, ...An} and M ′2 = M ′ \M ′1. Let C′1 =

d
B∈M′1

B,

and C′2 =
d

1≤f≤p ∃r
′
f .E

′
f with {∃r′1.E′1, ..., ∃r′p.E′p} =

{∃r.E | for one of B ∈ M ′2 holds [A2] such that there ex-
ists B′ ∈ sigC(T ) with T |= E v B′ and B ≡ ∃r.B′ ∈
T }. Clearly,C can be obtained from C′1 u C′2 by weaken-
ing. By Definition 4, there is a rule nA → u(nB1 , ..., nBo )
with {B1, ..., Bo} = M ′. Moreover, for all B ∈ M ′1 holds
nB → B and for all Bf ∈ M ′2, there is ∃r′f .E′f such
that there exists B′f ∈ sigC(T ) with T |= E′f v B′f
and Bf ≡ ∃r′f .B′f ∈ T . By Definition 2 (GL8), nBf →
∃r′f (nB′

f
). By induction hypothesis, there is a conceptE′′f such

that nB′
f
→+
Gw(T ,Σ,A)) tE′′

f
and E′f can be obtained from

E′′f by weakening. Therefore, nBf →
+
Gw(T ,Σ,A)) ∃r

′
f (tE′′

f
)

and ∃r′f .E′f can be obtained from ∃r′f .E′′f by weakening. Let
C′′′ = C′1 u

d
Bf∈M′2

∃r′f .E′′f . Then, C can be obtained

from C′′′ by weakening. Since our grammars operate on un-
ordered trees, we obtain nA →+

Gw(T ,Σ,A)) tC′′′ , i.e., tC′′′ ∈
L(Gw(T ,Σ, A)) for any order of conjuncts. Therefore, the
theorem holds with C′ = C′′′.



2. We proceed with showing that for each such general C with
sig(C) ⊆ Σ and T |= A v C holds: tC ∈ L(Gv(T ,Σ, A)). We
prove the claim by induction of the role depth of C. For each Aj ,
we know that T |= A v Aj andAj ∈ Σ, i.e.,Aj ∈ PostBase(A).
By Definition 2, nAj → Aj for all Aj . By Definition 4, nA →
u(nA1 , ..., nAn ), and, therefore, tC ∈ L(Gv(T ,Σ, A)). Assume
a role depth > 0. For each ∃rk.Ek, it follows from Lemma 5 that
there are B1, B2 ∈ sigC(T ) with B1 ≡ ∃rk.B2 ∈ T such that
T |= A v B1, T |= B2 v Ek. Since rk ∈ Σ, follows that
∃rk.B2 ∈ PostBase(A). Moreover, by induction hypothesis fol-
lows that tEk ∈ L(Gv(T ,Σ, B2)). An application of (GR3) in
combination with Definition 4 yields tC ∈ L(Gv(T ,Σ, A)). 2
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