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Abstract. Localization of nodes in ad hoc networks is an essential step
in many applications. A major task when localizing nodes is to accurately
estimate distances. So far, distance estimation is often based on counting
the minimum number of nodes on the shortest routing path (hop count)
and presuming a fixed width for one hop. This is prone to error as the
length of one hop can vary significantly. The geometric distance estima-
tion relies on the number of shared communication neighbors and applies
geometric coherences to the network structure. In this paper, it is shown
that the geometric approach is suitable to reliably estimate the distance
between any two adjacent nodes in a network. Experiments reveal that
the estimation has less relative percentage error compared to a hop based
algorithm. Experiments are performed in networks with different node
distributions to investigate the distributions’ effect on the quality of the
geometric approach.
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1 Introduction

In many applications such as geographic monitoring, smart buildings, target
tracking or disaster management, a large number of possibly mobile devices is
utilized to accomplish a specific goal. In general, such devices consist of low
power processors, have little memory and limited wireless communication range
to exchange short messages with other devices. A network of such devices which
has no fixed topology is called an ad hoc network or mobile ad hoc network
(MANET) [1].
In such networks, adding a GPS-receiver to the devices might not always be
desirable. Even though GPS meanwhile offers accuracy between 1 and 15 me-
ters in horizontal positioning [2], it consumes a significant amount of power and
is still quite expensive. Also, the GPS signal might not always be accessible,
such as in an indoor or underwater scenario. Nevertheless, location-awareness
plays an important role in many applications such as the allocation of event
reporting in a monitoring sensor network [4], [5], [6], location dependent rout-
ing [7], [8], [9], [10], [11] assist group querying [12], pattern formation [13], [14]
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and many more. For that reason, alternative localization techniques were pro-
posed for ad hoc networks to derive the location of each device in the network
in a self-organized, distributed manner (cf. [15], [16]).
Many of these algorithms rely on the estimation of the distance between each
node in the network and a small number of so called anchor nodes which are
assumed to know their coordinates either through a GPS-receiver or due to a
priori configuration. There are two main ways to estimate distances, either by
analyzing a received communication signal or based on hop counts. To determine
the hop count, the anchor sends a message with value 0 to all its neighbors. Each
node in the network takes the received message with minimal value, increments
it by 1, and forwards it accordingly. The width of one hop is then estimated as a
function of the radius r, assuming equal or at least similar length for each hop.
This is a daring assumption, because especially in sparse networks it is rarely
the case.
Different from the existing approaches, the main idea of geometric distance es-
timation is based on estimating the distance between two adjacent nodes taking
into account the individual local conditions. The goal of this paper is to transfer
geometric coherences to the network structure and to use them for distance esti-
mation. It is shown that the resulting distances are more accurate than distances
derived by hop based approaches.
This paper is structured as follows. In section 2, the related work is summarized
and the ad hoc network model is described briefly. In section 3, the geometric
distance estimation algorithm is specified. Section 4 presents the experiments’
settings and displays and discusses the results. Section 5 concludes the paper.

2 Basics

In this section related work for localization in ad hoc networks is presented and
an overview of the network model is described.

2.1 Related Work

In the literature, a typical way for self-organized absolute positioning of nodes
in a network is to use anchor nodes with known positions as a basis to derive
coordinates for all other nodes in the network. Examples for such positioning al-
gorithms are multilateration [21], triangulation [22], diffusion [23], [24] or bound-
ing box [25], [26] approaches. As opposed to the diffusion mechanism, all other
algorithms use distance estimation between each node and the anchors to calcu-
late the nodes’ coordinates.
There are several methods for estimating the distance between two nodes of an
ad hoc network. The most commonly addressed way, is to use the strength of the
radio frequency signal [3], [27], [28], [29]. Another method relying on the inter-
pretation of the physical signal is called time-of-flight [30], [31] where an audio
and infrared signal are emitted at the same time and the difference between the
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arrival times is used to estimate the distance. Signal strength or pattern anal-
ysis “requires extensive pre-planning” [23] and for the time-of-flight technique
complex hardware is required to be able to send and receive different signals
and measure the time difference. To avoid these issues, several mathematical ap-
proaches are developed to computed distances in a distributed way only relying
on local communication. To derive the distance communication hops between the
node and the anchor are counted and multiplied with an estimated value for the
width of one hop. The “DV-Hop propagation method” [3], [18], [19] estimates the
width of one communication hop as the ratio of the physical distance between
two anchor nodes and the number of hops that lie between them. In [17], the
determined hop counts are averaged over a neighborhood and multiplied by the
signal radius r, generally assuming r as the length of each hop and then refining
the situation of a node within its own hop. In [20], several fixed reduction rates
depending on the density of nodes in the neighborhood are applied to r to esti-
mate the width of one hop. This improves the estimation of distances, especially
in sparse networks, as it takes local information into account. One shortcoming
is that the reduction rates and the density range they are applied for have to be
chosen manually and beforehand. All of the afore mentioned methods estimate
the distance across communication hops using one or several fixed estimates for
the width of each hop.

2.2 Model

The applied model of an ad hoc network assumes randomly distributed devices
on a two dimensional obstacle free plane. The devices do not have global knowl-
edge of the network topology or their locations. Each device can communicate
with adjacent devices, which are all devices in its neighborhood. The goal is for
each device is to compute its distance to another node in the network using a
decentralized algorithm only relying on local communication. The neighborhood
of a device is defined as a physical neighborhood on the plane within a fixed
distance r from the device. The radius r is assumed to be much smaller than
the dimensions of the plane. All devices are assumed to have the same proper-
ties (homogeneous devices), except for anchor devices which posses knowledge
of their own positions. Even though mobility is not regarded in this paper, the
adjustment of the presented distance estimation algorithm to a mobile network
is straightforward.

3 Geometric Distance Estimation

The basic idea of Geometric Distance Estimation is to approximately determine
the common surface of two overlapping communication areas by the ratio of
shared to total neighbors. Knowing the overlap surface O, the distance between
the two communicating nodes can be derived. The distance can then be used
as input for the localization algorithms presented in 2.1 to obtain coordinates
for each device. In this section it is shown how to estimate the surface of the
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(a) (b)

Fig. 1. Two examples for adjacent nodes i, j and their neighborhoods. Nodes with
dotted lines belong to Ni, Grey filled nodes to Nj . Sij are nodes in the shaded area.

communication area overlap of two adjacent nodes and the necessary steps to
derive an estimate for the distance between the two nodes. The requirements for
the geometric distance estimation algorithm are that each node knows all of its
neighbors and can communicate with them and that the communication radius
r is identical and known to all devices. For a node i to estimate the portion of
its communication area which it has in common with an adjacent node j the
neighbors of node i have are distinguished with respect to j as follows:

Definition 31 (Classification of Neighbors) Let i, j be two adjacent nodes
and Ni, Nj the nodes situated in the neighborhood of i and j respectively. The
neighbors of i can now be categorized with respect to j as:

shared neighbors: Sij := {n|n ∈ (Ni ∩Nj)}

individual neighbors: Iij = {n|n ∈ (Ni\Sij)}

Figure 1 shows two examples for adjacent nodes i and j and the corresponding
classification of their neighbors.

The network structure of two adjacent nodes and their communication areas
can be mapped to the geometrical shape of two overlapping cirles. The prob-
lem to determine the distance between the adjacent nodes is hence transfered
to computing the distance between the corresponding circles’ centers. The ratio
of shared Sij to total neighbors Ni of a node i might deliver a good estimate
for the ratio of overlapping to total circular surface area. Assuming this corre-
lation holds, the surface of the overlapping area O can be estimated from the

perspective of node i as O ≈ πr2 · |Sij |
|Ni| .

The circles’ cut surface O has the shape of a concave lens or a mirrored
circular segment with surface A (cf. Figure 2), with:

A ≈ 0.5 · πr2 · |Sij |
|Ni|

(1)

When two circles of the same surface overlap, the cut’s surface O should
be inverse proportional to the distance d between the circles’ centers. Standard
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Fig. 2. Geometric characteristics of
two overlapping circles with the over-
lap surface O (blue filled area) and
the circular segment surface A (dot-
ted area).

Fig. 3. Relation of θ to ∆ and the approxi-
mated third-degree polynomial function f .

equation (2) describes the segment surface A from known radius r and segment
height h.

A = r2 arccos(1− h

r
)−

√
2rh− h2(r − h) (2)

With known A and r one could try to derive the value of h from equation
2. The segment height h can be mapped to the distance d between the circles’
centers with known r. The distance between the center of the circle and the
chord is equal to r − h. Therefore, the distance between the two centers can be
obtained by:

d = 2 · (r − h) (3)

Resolving Equation (2) to h is not feasible and as Equation 2 depends on h
and r there is no 2-dimensional representation that could be approximated by
the usage of regression. Nevertheless, the following considerations help to solve
this problem.
The height h of a segment can be described as a ratio θ of the circle’s radius r
and the segment area A is a portion of half the circle’s surface:

θ =
h

r
(4) ∆ =

A

0.5 · πr2
(5)

In the following we show that ∆ and θ are independent of r with the result
that the relationship between ∆ and θ can be approximated using regression.

The standard equations 7 and 6 descirbe A and h depending on r and angle
α (cf. Figure 2).
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A =
r2

2
· (α− sin(α)) (6) h = r · (1− cos(

α

2
)) (7)

Substitution A and h by rearranging Equations 5 and 4, it becomes apparent
that ∆ and θ are only dependent on α, which has a fixed value range, not on r.

The relation of ∆ and θ is now independent of r and can be approximated
using regression. Figure 3 shows data points (grey line) and the approximated
third-degree polynomial function f : ∆→ θ (dotted line) derived through poly-
nomial regression. Apparently, f is an almost perfect approximation of the rela-
tionship between ∆ and θ.

From the approximated function f , an estimate for the segment height h
and, thus, the distance d can be calculated with known ∆:

d = 2r(1− 2 · f(∆)) (8)

As stated before, A can be estimated from the relation between shared neigh-
bors Sij to total neigbhors Ni which can be computed locally using Equation
1.

Putting it all together, Equation (9) calculates the distance estimate d̂ij for
node i to its adjacent neighbor j, given the number of shared neighbors |Sij |,
total neighbors |Ni| and r.

d̂ij = r · (a · ( |Sij |
|Ni|

)3 + b · ( |Sij |
|Ni|

)2 + c · ( |Sij |
|Ni|

) + e))) (9)

Using regression to determine the polynomial f and further computations one
can estimate the coefficients as:

a = 3.90 b = −4.16 c = 3.04 e = 0.04

3.1 Evaluation of Geometric Distance Estimation

There are two influences for the accuracy of the geometric distance approach.
Firstly, the approximation of A using Equation 1 depends on the distribution
of neighbors in the communication area as well as the neighborhood size Ni,
secondly, the approximation of function f using polynomial regression is a source
of error.
The assumption underlying the geometric distance estimation approach is that
the number of nodes within an area of the environment can be mapped to the
size of this area. This is a critical assumption when the distribution of nodes
is imbalanced. As a result the ratio of shared to individual neighbors might
not reflect the relation of overlapping to total circular area anymore. Figure
1(b) illustrates this effect. The impact of the nodes’ distribution is assessed in
the experiments shown in section 4. The neighborhood size Ni determines the
possible precision for estimating ∆. There are |Ni|+ 1 possible estimates for the
ratio of segment surface area to total area ∆. The margin between these values
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Fig. 4. Approximation error of function f .

is 1
|Ni| . The resulting possible absolute error for the estimation of ∆ lies within

the interval [0, 1
|Ni| ). From Equation 8 and 9 the maximum absolute distance

estimation error induced by a small neighborhood size can be calculated as
ε ∈ [0, (28a+ 12b+ 4c)r) with |Ni| = 1 and ∆→ 1.
The other source of error is the approximation of function f . Figure 4 shows the
deviation between the approximation f(∆) and the correspoinding calculated
values of θ for different values of θ. As Figure 4 indicates, the approximation
error of function f is at most of 0.04. Which leads to a maximum absolute
distance estimation error of 0.16r. The acutal error depends on the ratio of
height h to radius r and, as the height is coupled with the distance d, it follows,
that estimating the same distance with different radii r can lead to different
estimation errors.

3.2 Distributed Geometric Distance Estimation Algorithm for Ad
Hoc Networks

In principle, the distance estimate d̂ij can range between 0 and r as the centers
of two overlapping circles have a maximum distance of 2r. This ignores the fact,
that adjacent nodes can have a maximum distance of r to be able to commu-
nicate. Therefore, in the network scenario d̂ij can be restricted to a maximum
value of r. This corresponds to a limited height h ∈ [0.5r, r] and, thus, the ap-
proximation error of function f is limited to the section highlighted in grey in
Figure 4.
As neighborhoods of i and j, Ni and Nj , commonly differ in size (cf. Figure 1
for an example), the estimates node i and node j calculate for their distance
can vary as well. An improved approximation can be obtained when node i and
node j exchange their estimates via communication and calculate the average of
d̂ij and d̂ji.
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This leads to the following algorithm computed by node i to estimate its dis-
tance to the adjacent node j using the geometric distance estimation approach:

Algorithm 1 CalcDistToNeighbor(i, j)

// Computing the distance between i and a neighbor j
Input: node i and node j
Output: estimated distance d̂ij
1: Ni = set of neighbors nodes
2: Ask neighbor j to send its set of neighbors Nj

3: Compute the shared neighbors Sij

4: Let x :=
|Sij |
|Ni|

5: d̂ij = r · (3.90 · x3 − 4.16 · x2 + 3.04 · x+ 0.04)
6: Limitation: If (d̂ij > r) Then d̂ij = r
7: Averaging: Ask j for d̂ji and compute d̂ij = 0.5 · (d̂ij + d̂ji)

To transfer the presented concept to a long range distance estimation between a
node i and an anchor node a, all distances along the shortest path between both
nodes are aggregated. The assumption is that all nodes in the network estimate
their distance to the anchor node a, which is the case for all eligible localization
algorithms (cf Section 2.1). To estimate the distance between node i and an
anchor node a the following algorithm is computed on node i:

Algorithm 2 CalcDistToAnchor(i, a)

// Computing the distance between i and an anchor a
Input: node i and node a
Output: estimated distance d̂ia
1: Ni = set of neighbors of node i
2: If anchor (a ∈ Ni) Then d̂ia =CalcDistToNeighbor(i, a)
3: Else search for neighbor k closest to a:

For j = 1 To |Ni|
k = argmin(d̂ja = CalcDistToAnchor(j, a), j)

End For
4: Compute distance to k: d̂ik =CalcDistToNeighbor(i, k)
5: Aggregate distances: d̂ia = d̂ik + d̂ka

End If

For comparison, in [21], the distance d̂ia between a node i and the anchor a is
estimated as:

d̂ia =

∑
j∈Ni

hja + hia

|Ni|+ 1
− 0.5× r (10)

With Ni being all neighbors of node i and hia denoting the hop count of node i
to the anchor a.



Distributed Geometric Distance Estimation in Ad Hoc Networks 9

Note that in both algorithms each node’s calculation depends on other nodes’
results. Therefore, the algorithm has to be executed iteratively before a stable
estimate is achieved. The necessary number of executions is subject to the neigh-
borhood size and the number of nodes that lie on the shortest path between i
and a. In mobile networks the algorithm can be executed repeatedly to dynami-
cally compute the distance estimate considering changes in the locations of node
i or a respectively.

4 Experiments

Geometric distance estimation relies on the idea that the ratio of shared to total
neighbors delivers a sufficiently precise estimate for the ratio of overlapping to
total surface of the communication area. In this section experiments are pre-
sented to evaluate whether this basic assumption holds for a variety of network
topologies. The quality of the derived distance estimates are evaluated for three
different network scenarios. The second part of the experiments investigates the
usage of the geometric distance estimation approach to estimate distances to an-
chor nodes. The results are then compared to distances derived by a hop count
based approach as described in 2.1.
For the experiments a 2-dimensional square environment of size 1.0 x 1.0 units
containing 1000 nodes is considered. The neighborhood size as well as the phys-
ical distribution of nodes is expected to be an influencing factor for the quality
of the estimate. Therefore, different scenarios for the nodes’ distribution across
the environment are considered. Two randomly distributed networks are inves-
tigated using a uniform random distribution in Scenario 1 (cf. Figure 5(c)) and
a Gaussian random distribution in Scenario 2 (cf. Figure 5(b)). Figure 5(c) dis-
plays Scenario 3, where the nodes are positioned evenly in a grid-like shape.
Applying a uniform random distribution to determine positions results in a bal-
anced distribution of neighbors across the communication surface area similar
to Figure 1(a), whereas the Gaussian random distribution distorts the balance
in direction of the environment’s center (cf. Figure 1(b) for an example). Evenly
distributed networks have the characteristic that all inner nodes (nodes that
have a minimum distance of r to the border of the environment) have the same
neighborhood size. These different scenarios were selected to investigate the in-
fluence of node distribution of neighbors in the communication area. Besides
the distribution of nodes, different values for the communication radius r were
tested to vary the neighborhood size which was also identified to be a potential
source of error (cf. Section 3.1).

4.1 Distance estimation between neighbors

In the first set of experiments, every node estimates its distance to all adjacent
nodes, i.e. all nodes within communication range, using the geometric distance
estimation approach. Due to lack of comparable algorithms (the other presented
approaches only estimate distances that exceed one hop), the average distance
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Fig. 5. Positioning according to a uniform random distribution (a), a Gaussian random
distribution (b), and evenly distributed nodes (c).

Fig. 6. Average distances between adjacent nodes in networks with different distribu-
tions depending on the communication radius r.

between adjacent nodes in the considered scenarios is taken as reference. Fig-
ure 6 shows the average distances for each experiment setting. The step-like
incline in evenly distributed networks is due to the symmetric arrangement of
nodes. To evaluate the quality of the estimates, the mean absolute percentage

error (MAPE) is calculated as MAPE(d̂ij) =
|dij−d̂ij |

dij
, where dij denotes the

euclidean distance between a node i and its neighbor j and d̂ij denotes the esti-
mate of that distance. The MAPE gives information about the relative deviation
of the estimate with respect to the real distance. As nodes near the border of
the environment have a circumcised communication area, all experiments were
repeated using only inner nodes in order to illustrate the influence of border
nodes on the network’s average estimation error.

The results for Scenario 1 are shown in Figure 7(a). The geometric distance
estimation delivers estimation results ranging between 40% up to approximately
15% (10% for inner nodes) deviation from the real distance which is consistently
less error-prone than estimating the distance using the average of the network.
The results indicate, that the geometric distance estimation approach delivers
reliable estimates for distances between adjacent nodes at least in networks with
uniformly randomly distributed nodes. An observation that can be made is the
improvement of estimation quality with increasing communication radius r. This
can be explained by the entailed growth of the number of neighbors and, thus,
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Fig. 7. MAPE using the geometric approach (Geo) compared to the error when using
the average distance as an estimate (Simple).

the increase in precision.
Figure 7(b) shows the MAPE for distance estimation between any two adja-
cent nodes in a Gaussian random distributed network. Contrary to what one
might intuitively expect, the geometrical estimation performs even better as in
uniformly random distributed networks despite the imbalanced distribution of
nodes. The reason lies in averaging the estimates of both involved nodes. An
unbalanced distribution of nodes leads to an overestimation in one node and
an underestimation in the other node which may, under certain circumstances,
provide a good estimate on average. Another factor for the less error-prone es-
timates in the Gaussian distributed network is the larger average neighborhood
size due to the concentration of nodes in the center of the environment.

For scenario 2, it is further noticeable, that the percentage error does not
decrease continuously with rising radius r, which seemed to be the case for
uniformly random distributed networks. Instead, the curve has a convex shape.
This is due to the approximation error of f . As stated before, the estimation error
induced by approximating the function f is dependent on θ, i.e. the ratio of height
h to radius r. For all experiments θ ranges between (0.61, 0.69), thus the closest
zero-error point θ∗ lies approximately at θ∗ = 0.745 (cf. Figure 4). Figure 8 shows
the average percentage deviation for all considered node distributions and radii
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from this zero-error-point. The experiments with Gaussian distributed nodes
diverge stronger with increasing radius than the experiments with uniformly
random distributed nodes, which explains the convex behavior of the MAPE
curve.

Fig. 8. Percentage deviation between θ
and θ∗, i.e. the value for θ where f has
zero approximation error.

Fig. 9. Sample standard deviation of dis-
tance estimation between neighbors in
the three considered scenarios.

Figure 7(c) shows the results for Scenario 3. Intuitively one would expect a
similar MAPE as in uniformly random distributed networks, as the distribution
of nodes is very balanced in both scenarios. Nevertheless, this does not appear
to be the case at first sight, but when looking at the trendline (black dotted
line) the behavior is quite similar. The oscillating error can be explained by the
step-like increase of the average distance d (cf. Figure 6) in combination with
the afore mentioned distance dependent error of the approximated function f .

Figure 9 illustrates the sample standard deviation for the previously pre-
sented experiments. It shows that the standard deviation is relatively small
compared to the estimates using the average distance. This further substan-
tiates the observation that the geometric concept is successfully transferred to
the network topology delivering reliable estimates for each regarded distance
estimation and not only on average for the whole network.

4.2 Distance estimation to anchor nodes

The second set of experiments has the objective to evaluate the geometric dis-
tance estimation concept for the estimation of distances to anchor nodes. There-
fore, an anchor node is randomly chosen in each experiment iteration and all
other nodes estimate their distance to this anchor node according to Algorithm
2 (cf. Section 3.2). For comparison, the hop count based distance estimation
described in [17] is used. This method has been successfully used for localization
in [21] and does not require more than one anchor node for distance estimation
as opposed to the DV-hop propagation model in [18].



Distributed Geometric Distance Estimation in Ad Hoc Networks 13

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Fig. 10. MAPE for geometric versus traditional approach on long distance estimation
including standard sample deviation.

Figure 10(a) shows the MAPE for Scenario 1, using the uniform random distri-
bution for node positioning. Figure 10(b) for Scenario 2, the Gaussian randomly
distributed network and Figure 10(c) for Scenario 3, with evenly distributed
nodes. It can be observed that the geometric distance estimation approach leads
to less error-prone estimates than the hop count based estimation for all con-
sidered distributions and radii. Furthermore, it should be noted that even the
sample standard deviation is many times less or equal to the MAPE of hop
count based estimates. This confirms that the geometric distance estimation ap-
proach is a consistent improvement in distance estimation for all considered ad
hoc network scenarios and radii.

5 Conclusion and Future Work

This paper presents an approach for estimating distances in an ad hoc network.
The approach relies on the ratio of shared to total neighbors and applies geomet-
ric coherences to the network structure. Three sources for error in the geometric
distance estimation approach were identified and, where possible, quantified.
Experiments were conducted to investigate the absolute percentage error of the
distance estimates in three different network scenarios: uniformly random, Gaus-
sian random, and evenly distributed nodes. The results were compared to a hop
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count based estimation approach, showing that the geometric distance estima-
tion reliably delivers more precise estimates. This observation was consistent for
all investigated communication radii and node distribution scenarios. Further-
more, even the sample standard deviation for geometric distance estimation is
close to the average percentage error of the hop count based approach and lies
below it for some considered experiment settings.
In future work, the geometric distance estimation method is to be investigated
for the usage in localization algorithms described in section 2.1. We expect to
improve the accuracy of the established coordinate system with the geometric
distance estimation as a great part of the error in finding coordinates is due to
inaccuracy in distance estimation. Besides, the robustness of the algorithm is to
be tested under mobile conditions.
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