
A Completely Evolvable Genotype-Phenotype Mapping for
Evolutionary Robotics

Lukas König
Institute AIFB

Karlsruhe Institute of Technology
76128 Karlsruhe, Germany

lukas.koenig@kit.edu

Hartmut Schmeck
Institute AIFB

Karlsruhe Institute of Technology
76128 Karlsruhe, Germany
hartmut.schmeck@kit.edu

Abstract

To achieve a desired global behavior for a swarm of
robots where each robot has a local view and operating
range in the environment is a well-known and challeng-
ing problem. Evolutionary Robotics is a self-adaptation
approach which has been shown to effectively find robot
controllers for behaviors which are hard to implement by
hand. There, evolvability is highly dependent on controller
representation during evolution. It is known that using a
genotypic controller representation which also encodes parts
of the genotype-phenotype mapping (GPM) can lead to a
meta-adaptation of the evolutionary operators to the search
space structure, thus improving evolvability. We enhance
this idea using a fully flexible GPM which is represented
in the same way as the behavioral controllers are, and,
therefore, can be completely evolved along with the behavior.
The approach is based on finite state machines and extends
an existing framework for decentralized evolution of robot
behavior in swarms of mobile robots. Experiments indicate
that the evolvable GPM outperforms both the extensively
improved operators of the existing framework and a standard
operator for the new real-valued genotypes with fixed GPM.

1. Introduction

Programming robots by hand is often challenging and
can be unfeasible particularly for swarms of robots where
predicting the emerging global behavior is hard [2]. The
potentials of collective behavior, however, are great [1], and
applications for swarms of robots gain importance reaching
from delivering scenarios in store-houses to accessing dan-
gerous or unapproachable areas by adapting to previously
unknown conditions. Evolutionary Robotics (ER) is a self-
adaptation technique which arose in the last two decades
from the well-established field of evolutionary computation.
It is known to be effective in developing robot behaviors in
various scenarios such as exploitation of collective behavior,
but also in single robots performing onboard evolution in
simulation, or in many other scenarios [3], [15]. Evolution,

based on the Darwinian principle of a survival of the
fittest, is capable of finding controllers which outperform
human solutions in terms of effectiveness in solving the task,
simplicity of the controller, and generalizability of the learnt
behavior [16].

Impact of the genotype-phenotype mapping (GPM)
on Evolvability. Evolution can be done in solution space
(phenotypic space) alone, i. e., mutation and recombination
are applied directly to behavioral programs of robots. How-
ever, utilizing a genotypic representation different from the
solution space by performing search in the genotypic and
evaluation in the phenotypic space can improve performance
of evolution. There, the GPM can be fixed or itself subject
to evolution [15].

(1) Fixed GPM: In classical Genetic Programming (which
the main ideas for the original framework were borrowed
from [11]), there is no distinction between genotype and
phenotype (cf. [14]). In [9], bitstrings are used to genetically
encode phenotypes which are C programs, using a repair
mechanism as part of the GPM to make every string valid;
this leads to a significant improvement in terms of quality
of the found solutions compared to an approach with pheno-
types only. The authors explain the improvement by the hard
syntactical constraints on mutation and recombination when
working on the phenotypic space. Using a genotypic repre-
sentation makes it possible to alter the genotypes arbitrarily,
and map them onto the nearest legal phenotype using the
repair mechanism. Thus, originally infeasible gaps in the
search space get replaced by neutral plateaus which have
been shown to improve evolvability [10].

The evolutionary operators used in our earlier work [11]–
[13] are working on a space of finite state machines (FSMs)
which also have hard syntactical constraints. Therefore,
an improvement can be expected by using a genotypic
representation. In this paper, genotypes are sequences of
integers which encode FSMs. During translation, a script
is created providing a repair mechanism. Experiments with
this fixed representation show an improvement in terms of
mean fitness and complexity of evolved behaviors which is

even larger than expected.

(2) Evolvable GPM: In ER, due to the underlying dy-
namical fitness landscape, even more sophisticated GPMs
are suggested, to make complex behaviors evolvable [15].
Encodings are supposed to have (a) expressive power (i. e.,
many different phenotypical characteristics should be encod-
able, e. g., parts of the GPM itself), (b) compactness (i. e.,
the length of the genotype should not directly reflect the
complexity of the phenotype, e. g., by introducing repeated
structures), and (c) evolvability (i. e., the evolutionary oper-
ators should generally be able to produce improvements).

(a) Expressive power: In the presented approach, the com-
plete GPM is part of the genome, leading to a high
expressive power. While parts of the GPM have suc-
cessfully been evolved earlier, to our best knowledge
evolution of the complete GPM has not been done
before (although it has been suggested, e. g., in [9]).
The required flexibility of the mapping is achieved by
letting the translation process which performs the GPM
be part of the genotype and subject to the evolutionary
operators itself. This means that the interpretation of
the behavioral part of the genotype as well as the
interpretation of the translation part changes during
evolution.
In nature, the GPM has evolved along with the other
properties of living beings and there are still some
mechanisms active that change the semantics of genes,
i. e., the GPM [4]. An evolvable GPM allows for
evolution to learn structural properties of the search
space, which depend on the learnt behavior, and to use
this knowledge for improving evolvability during a run.
Fig. 1 shows an example of adaptation of the mutation
step size when searching the minimum of a Schaffer 2
function in a one-dimensional real-valued search space.
Due to the flexibility of the GPM, operators can be
adapted indirectly by changing the meaning of a part of
the genotype, thus changing the impact of the operator
when working on that part. More complex behaviors
are expected to be evolvable, although needing possibly
more running time for GPM adaptation. Experiment
time has, therefore, been increased from 80, 000 simu-
lation cycles in [12] to 300, 000.

(b) Compactness: The GPM is performed by FSMs which
can have loops, thus being able to create repeated
structures which allow for a compact genotypical rep-
resentation.

(c) Evolvability: this is a property which is hard to identify
in a system. The suggestions made in [15] have been
respected for the initial settings of the runs. As the GPM
changes during evolution, this cannot be guaranteed
for later states of the runs, but as argued before an
improvement in evolvability is expected to occur during
the runs.

The experimental results imply that an improvement in
terms of complexity of the behavior has occurred (Sec. 5).

Figure 1. Possible adaptation of mutation step size when
searching the minimum in a one-dimensional real-valued
search space given by a Schaffer 2 function: f (x) =

x0.5
(
sin2

(
50 · x0.2

)
+ 1

)
. When approaching the optimum at

x = 0, an individual’s mutation step size should decrease.

Controller and GPM Representation. A general idea of
the presented model is to use the same representation for
robot controllers and for the GPM to make it possible to
evolve both simultaneously using the same set of evolution-
ary operators. We use a FSM model called Moore Automaton
for Robot Behavior (MARB) for the representation of robot
controllers (based on our preliminary work in [11]–[13]). A
very similar model called Moore Automaton for Protected
Translation (MAPT), differing only in sensor and actuator
spaces, is used for the representation of GPMs.

The evolutionary operators studied here do not involve re-
combination. Diversity is established by mutation only. Also,
the memory genome which is proposed in [12], introducing
a decentralized elitism for the framework, is not used. The
operators are kept as simple as possible to allow for a study
of the effects of the evolvable GPM and the new fixed GPM
on performance. In future studies, a recombination operator
and the memory genome are planned to be combined with
the new GPM.

The reality gap. A well-known problem in evolutionary
robotics is the transfer of simulated results into real-world
applications (cf. [6], [7]). This problem, often referred to
as the reality gap, arises from several real-world factors
(unknown changes in the environment, unpredictable loco-
motive and sensory differences between robots, mechanical
and software failures, etc.) which are hard to simulate. We
face the reality gap by combining simulation and reality as
suggested in [16]. The evolutionary parameters and operators
are adjusted in a rather simple simulation which does not
support a detailed physics engine. However, it is sufficient
to study the mechanisms of evolution. Actual evolution is
done online on real robots. Experiments in this paper are
performed in simulation only because a real robot platform
is currently not available, but experiments on real robots
have been done in [11] and are planned to be done in the
future.

Decentralized Online Evolution. The proposed evo-
lutionary framework is completely decentralized and can
be implemented in simulation as well as on real robot
platforms. The framework is designed to work onboard of
robots (simulated or real), accomplishing an evolutionary
algorithm without any central control. In that sense it is an
application of the ”embodied evolution” proposed in [17].
Due to the decentralization, the framework scales well to
large swarms of robots and can be easily implemented for
different simulation and robot platforms. Furthermore, the
behavior is evolved online which means that during a run,
currently evolved behavior is evaluated by observing its
performance on the given task. This requirement is given by
tasks where robots have to adapt quickly to a new situation
and learn how to deal with a novel objective, e. g., when
swarms of robots explore new and unknown areas where
challenges may change constantly.

The Jasmine-IIIp Robot. The framework is defined in a
general way and is applicable on different robot platforms.
Up to now, it is implemented and tested on the Jasmine IIIp
robot which is also simulated. The Jasmine IIIp series is
a swarm of micro-robots sized 26 × 26 × 26 mm3. It can
process simple motoric commands like driving forwards
and backwards and turning left and right. Each robot has
seven infra-red sensors (as depicted in Fig. 2) return-
ing values from 0 to 255 in order to measure distances
to obstacles (cf. www.swarmrobot.org). In simulation, the
return value of a sensor is calculated by the function
d(x) =

⌊
255 · 51(R−(x·A·B))/150

⌋
, where x is the distance from

the middle of the robot to the closest object in range of the
sensor (in millimeters), and R is the distance of the sensor
to the middle of the robot; A is 1 if the obstacle is a wall,
and 2 if it is a robot (walls reflect infra-red light better than
robots); B is 1 for sensors 2 to 7, and 0.75 for sensor 1 due
to its greater detection radius. In one simulation step, a robot
moves 4 mm straight forward (Move-command) or turns left
or right by an angle of 10 degrees (Turn-command; mapped
on real world dimensions). A crash with an obstacle (i. e.,
a wall or another robot) is simulated by placing the robot
at a random free place within a 4 mm radius from the last
position before the collision, and turning it by a random
angle (if this is possible without a new collision).

2. Automaton Model

In this section, the behavioral and evolutionary model
are described. Parts of the model have also been described
in [11]–[13], however, all parts involving the translator
automaton, which is a central component in the GPM, are
new. To keep notations consistent with earlier work, symbols
concerning behavioral automata will be used without index
while symbols concerning translator automata will be as-
signed the index trans. For the purpose of a simpler notation,

Figure 2. Placement of infra-red sensors around a (simu-
lated) Jasmine-IIIp robot. Sensors 2 − 7 are using an infra-
red light source with an opening angle of 60 degrees to
detect obstacles in every direction of vision. Sensor 1 has
an angle of 20 degrees to allow detection of more distant
obstacles in the front.

? is used as a ”do not care” symbol which can be empty or
the index trans.

Genes are sequences of numbers; a robot’s genome con-
sists of one behavioral and one translator gene. A formal
definition of the genotypic space is given in Sec. 3.

Figure 3. Translation process from genetic sequences to
behavioral and translator automata. After a mutation of one
of the sequences, the according automaton gets replaced
by the translation of the new sequence.

Moore Automata for Robot Behavior (MARB) and
for Protected Translation (MAPT). Essentially, the same
model based on Moore Automata is used for the description
of robot behavior and for the description of the trans-
lation process from genotypes to phenotypes (behavioral
or translator automata), i. e., the GPM, cf. Fig. 3. Every
robot carries its own translator, i. e., a GPM, which can
be altered during evolution. Using one single automaton
model makes it possible to apply the same evolutionary

operators to both types of automata. The space of behavioral
automata is called MARB, the space of translator automata
MAPT ; where it does not cause any confusions, the same
abbreviation is used for elements of these spaces, i. e.,
actual automata. See Fig. 5 (a) for an example MARB and
Fig. 5 (b) for an example MAPT.

For both types of automata at each state of the automaton
an operation is executed. This is a movement operation in
the behavioral case, and an operation for the construction of
a new (behavioral or translator) automaton in the translator
case. The transition function, which determines the next state
to enter, is defined based on values from virtual or real
sensors. In the case of behavioral automata, the accessible
sensors are 7 real sensors which are placed on a robot
and indicate distances to objects. In the case of translator
automata they are 5 virtual sensors, two of which represent
reading heads on the genetic sequence and the other three
serve as registers, each capable to store one byte value.
Therefore, the only difference between MARBs (navigating
a robot through an environment) and MAPTs (producing
new automata by traversing a genetic sequence) are the
different operation and sensor spaces they work on.

Preliminaries. A (real or virtual) sensor is represented
by a sensor variable which can take a byte value. Let
B = {0, ..., 255} and B+ = {1, ..., 255} be the set of all
and only the positive byte values, respectively. A sensor
variable is denoted by the letter h with a numeric index. For
i ≤ j ∈ N and a set of sensor variables {hi, hi+1, ..., h j} let
(vi, vi+1, ..., v j) ∈ B j−i+1 be a tuple of the actual corresponding
values of the sensors.

In the case of behavioral automata, the set H = {h1, ..., h7}

defines the sensor variables. For 1 ≤ i ≤ 7, hi is associated
to the real sensor labeled with i in Fig. 2. At a specific time
step in an environment, the tuple of current values of the
sensors is V = (v1, ..., v7) ∈ B7.

In the case of translator automata, the sensor variables are
defined by the set Htrans = {h99, ..., h103}. For 99 ≤ j ≤ 103,
h j is associated to the virtual sensor labeled with h j in
Fig. 4. At a specific position during the traversal of a
genetic sequence, the tuple of actual values of the sensors
is Vtrans = (v99, ..., v103) ∈ B5. There, h100 represents the
value at the current position of the reading head, h99 the
next value (which is the value right of the position of the
reading head or zero if the reading head is on the rightmost
position); h101, ..., h103 represent three registers which can be
fed by byte values to store information about the previous
translation course.

Note that only one of the sensor sets H and Htrans is used
at the same time. The sensors h8, ..., h98 are never used; this
gap is kept clear to make it possible to add more sensors.

Two randomized functions are assumed: rand(X) takes a
finite set X as a parameter and returns a random element out
of it based on uniform distribution; randgaussian() returns a
random real number by standard normal distribution (with a

mean of 0 and a standard deviation of 1).

Figure 4. Virtual sensors of a translator; two of them return
the value of the current and next gene sequence symbol,
the other three serve as registers.

Automaton Definition. A (deterministic) Moore Automa-
ton as defined in [5] is a 6-tuple (Q,Σ,∆, δ, λ, q0). Q is a set
of states, Σ is an input alphabet, ∆ is an output alphabet,
δ : Q × Σ → Q is a transition function, λ : Q → ∆ is an
output function, and q0 ∈ Q is the initial state.

The execution of a Moore Automaton begins at the initial
state q0; for every state q ∈ Q, an output λ(q) is written on
some output stream, and a unique following state δ(q, v) is
determined by the transition function based on which symbol
v ∈ Σ is currently read on some input stream. In the case
of behavioral automata, the input stream is given by the
movement through an environment and the retrieved sensor
values. For translator automata, the input stream is given
by the virtual sensor values resulting from the traversal of
a genetic sequence from left to right, performing a state
change for each symbol. The output at each state causes a
movement action for behavioral automata and a construction
command for translator automata.

In the model presented here, the flexible parts of the au-
tomaton which are subject to evolution are: the set of states
Q including q0, the output function λ, and the transition
function δ. The output alphabet is fixed and defined to be a
set of operations ∆ = Op or ∆ = Optrans as defined below
for behavioral or translator automata, respectively. The input
alphabet is also fixed and defined to consist of all possible
combinations of sensor values Σ = V or Σ = Vtrans for
behavioral or translator automata, respectively. The states
are identified by positive byte values, i. e., 1, ..., 255.

A Moore Automaton is depicted graphically by drawing
one circle per state q ∈ Q labeled with the state’s name
q and the output λ(q) (the name is put at the top of the
circle, the command and parameter at the bottom and the
additional parameter in brackets in the middle); an incoming
arrow marks the initial state. For any two states q, q′ with
δ(q, v) = q′ for some v ∈ Σ, an arrow (representing a

transition or an edge) is drawn from the circle for q to the
circle for q′. The arrows are labeled with conditions which
belong to the transitions (see below); cf. Fig. 5.

Figure 5. (a) Example MARB performing a simple collision
avoidance behavior (move forward: ”Move(1)” as long as
no obstacle is ahead: ”h1 ≤ 30”, turn left: ”TurnLe f t(1)”
if an obstacle is ahead: ”h1 > 30”). (b) Example MAPT
performing a simple translation (create edges from the
state named by next symbol to the one named by current
symbol: ”edg(99, 100)” as long as next symbol is different
from current: ”h99 , h100”, replace current state’s command
by current symbol in sequence: ”cmd(100, 99)” if current
and next symbol are equal: ”h99 = h100”). Arrow thickness
denotes likelihood for condition to get true.

Conditions. To avoid defining for every state q ∈ Q and
every input symbol v ∈ Σ a separate outgoing transition
(which would result in |V | = 2567 or |Vtrans| = 2565 transi-
tions per state), we define a set of conditions to cluster the
input alphabet. A transition is then taken if the corresponding
condition evaluates to true under the current sensor values.

For behavioral automata, the set C of conditions over the
sensor variables H is the set defined by:

cF true | f alse | z1 / z2 | (c1 ◦ c2),

with z1, z2 ∈ B+ ∪ H, / ∈ {<, >,≤,≥,=,,,≈,0},
◦ ∈ {AND,OR}, c1, c2 conditions.

For translator automata, the condition set Ctrans over
Htrans is defined accordingly.

true and f alse are called atomic constants, z1 /z2 is called
an atomic comparison. Therefore, a condition can be an
arbitrary combination of atomic comparisons and atomic
constants, connected by AND and OR. For a, b ∈ B, it is
defined: a ≈ b iff |a − b| ≤ 5 and a 0 b iff ¬a ≈ b.

Example conditions are:
true, f alse, h1 < h2, 20 > h7 ∈ C;
(h100 ≈ h99 OR h102 0 120) ∈ Ctrans.
A function E : C×V → {true, f alse} evaluates a condition

c ∈ C to true or f alse in the obvious way, inserting the
current sensor values v ∈ V for the sensor variables.

Note that for technical reasons, the constant 0 must not
be part of a condition; however, every atomic comparison
containing 0 can be expressed as an equivalent condition
without 0, e. g., ∀v : E(h1 > 0, v) = E(h1 ≥ 1, v).

As conditions and transitions are subject to evolution, two
cases of inconsistency can occur and have to be considered.
(1) If for a state none of the outgoing transitions have a
condition that evaluates to true, there is an implicit default
transition to the initial state. Fig. 5 shows two automata with
two states and a complete definition of transitions. However,
all transitions pointing to the initial state 1 could be deleted,
since they are implicitly defined. (2) If, on the other hand,
more than one condition evaluates to true, the first of the
true transitions (in order of insertion during construction of
the automaton) is chosen.

Operations. For both types of automata the operations
which are executed at any state have the form of a 3-
tuple (Command, Parameter, additional Parameter) of bytes:
(A, X,Y) ∈ B × B × B. The command A is specified by the
sets Cmd and Cmdtrans in the following (which are internally
mapped into B). Parameter and additional parameter may
be ignored for some commands. The operation (A, X,Y) is
also written as A(X,Y) (or A(X), A() if parameter and / or
additional parameter are ignored).

Operations for behavioral automata. Behavioral com-
mands are defined by the set

Cmd = {Move,TurnLe f t,TurnRight, S top, Idle}.

All possible behavioral operations are defined by the set
Op = Cmd × B × B, which mean for an operation
A(X) (for all behavioral operations the additional parameter
Y is ignored): drive forward for at most X mm, turn left
for at most X degrees, turn right for at most X degrees,
stop performing the current operation, or keep performing
the current operation, respectively. For S top and Idle, the
parameter X is also ignored. A behavioral automaton’s
operation can be, e. g., Move(10) ∈ Op.

Operations for translator automata. A translator is
supposed to construct a complete automaton which consists
of nodes, edges, state labels, and conditions. To achieve
a desired universality in the GPM, there should exist for
each (behavioral or translator) automaton a at least one
combination of translator t and genetic sequence g, such
that the translation of g by t yields a, i. e., dec(t, g) = a or
dectrans(t, g) = a (in the notation introduced in Sec. 3; in
the presented model it even holds that independently of the
sequence g there exists a translator t with dec?(t, g) = a).
The language of conditions, however, is context-free and
cannot be expressed by a regular language which means
that it is impossible for a pure finite-state model to create all
syntactically correct conditions. Moreover, it is desired that
every operation executed by a translator has a well-defined
effect on the outcoming automaton and that this effect is not

trivial for most operations. E. g., if an operation for inserting
an edge between the states a, b ∈ B+ would be defined to
work only if the states a and b already exist in the automaton,
this operation would have no effect for most combinations
of a and b in most automata of usual size.

To solve both these problems, a script language has been
introduced which provides access to a stack memory for
the construction of conditions; additionally, for the interpre-
tation process a repair mechanism is performed on invalid
operations to make their effect valid, and, in many cases,
non-trivial. The translator then only has to create a valid
script out of a genetic sequence and the rest is done by
executing of the script. Translator operations will, therefore,
be based on the script operations defined in the following.

A script is a sequence Op∗scr of script instructions to be
executed sequentially. A script instruction A(X,Y) belongs
to a set of operations Opscr = Cmdscr × B × B with

Cmdscr = {nod, cmd, par, add,T H,TC,TO, edg}.

The commands nod, cmd, par, and add are used to insert
a state and change its command, parameter, and additional
parameter, respectively. T H, TC, and TO are commands
for building a condition in the internal memory by inserting
sensor variables (H), atomic constants (C) and operators (O)
in a postfix manner. The command edg inserts a transition
between two states using the currently constructed condition.
If edg is invoked while the current condition is not yet
finished, the condition is finished by standard values before it
is used. If the parameter of an instruction is out of range for
that instruction, the script interpreter maps it on the adequate
range via a modulo operation (this procedure is assumed to
be already done in the following). Standard values replace
invalid values; they are generated by a standard value gener-
ator based on several counters for the different value spaces
guaranteeing a deterministic, but diverse value distribution.
Fig. 6 shows the process of translation by using a script.

The script instructions are interpreted as follows:
• nod(X): Insert state X (if state X already exists do

nothing; if X is the first inserted state, declare it initial
state) and use a standard command, parameter, and
additional parameter for the operation.

• cmd(X,Y): If state X does not exist, execute nod(X).
Change the command of state X to Y .

• par(X,Y): If state X does not exist, execute nod(X).
Change the parameter of state X to Y .

• add(X,Y): If state X does not exist, execute nod(X).
Change the additional parameter of state X to Y .

• T H(X): Add X to condition as next postfix-symbol if a
sensor variable is syntactically correct here, otherwise
execute TO(X).

• TC(X): Add X to condition if an atomic constant (true
or f alse) is correct here, otherwise execute TO(X).

• TO(X): Add X to condition if an operator (<, >, ...)
is correct here, otherwise execute randomly T H(X) or

Figure 6. Example translation of a behavioral gene into a
behavioral automaton.

TC(X) by uniform distribution.
• edg(X,Y): If state X does not exist: nod(X). If state Y

does not exist: nod(Y). If the current condition cond is
unfinished: finish cond by using standard values. Insert
a transition from state X to state Y labeled with cond.

The set of commands for translator automata is a superset
of the script commands and defined to be

Cmdtrans = Cmdscr ∪ {RC,RV,NXT }.

The set of translator operations is accordingly defined to be
Optrans = Cmdtrans × B × B. For a translator a script
operation A(X,Y) ∈ Opscr ⊂ Optrans has the meaning: insert
A(X,Y) into the script.

The register operations RC(X,Y) and RV(X,Y) mean:
store in the register sensor X the constant value Y or the
variable value from sensor Y , respectively. If X or Y is out
of range, a modulo transformation is performed to set it into
the range of the register sensors (h101, ..., h103).

The operation NXT () does not perform any action. The
automaton simply moves on to the next state while the
reading head moves one step further to the right.

This model is capable of generating any possible automa-
ton from the spaces MARB or MAPT. The term Moore
Automaton for Protected Translation is dedicated to the
usage of a script which protects the GPM from syntactical
failures during translation.

3. Genotypic and Phenotypic Spaces

In this section, the genotypic space (search space) and the
two phenotypic spaces (solution spaces; one for behaviors
and one for translators) are defined. The genotypic space

consists of sequences of numbers which are mapped on be-
havioral or translator automata in the respective phenotypic
spaces.

Genotypic space. As mentioned before, a gene or (ge-
netic) sequence is a flexible-size array of numbers from the
genotypic space

G = B∗.

Position i in a gene g is denoted by g[i], |g| is the length
of g (i. e., the number of bytes). A genome Gr of a robot r
consist of two genes, namely the behavioral gene gr and the
translator gene gr

trans, and is defined by the tuple

Gr = (gr, gr
trans) ∈ G × G.

Phenotypic spaces. Two different kinds of phenotypic
spaces are distinguished: (1) The space of (behavioral)
phenotypes P = MARB is the space of all Moore Automata
for Robot Behavior. Its elements are called behaviors and are
executed on robots as behavioral programs being, therefore,
directly subject to selection. (2) The space of translator
phenotypes Ptrans = MAPT is the space of all Moore
Automata for Protected Translation. The elements are called
translators; their function is to translate behavioral genes
as well as translator genes into robot behaviors or other
translators, respectively. They are evaluated only indirectly
as they influence evolvability of the robot behavior during
a run causing better or worse long-term performance (there
is one exception to that statement as empty translators are
sorted out directly after mutation; see Sec. 4).

Please be aware that the definitions of genotypic and
phenotypic spaces used here differ from those provided
in [11]–[13] where behavioral automata were positioned in
the genotypic space.

There exist two mappings (decodings) from the genotypic
space to the two phenotypic spaces:

dec : G × Ptrans → P, (1)
dectrans : G × Ptrans → Ptrans. (2)

The mapping dec denotes the creation of a robot behavior
out of a gene using an existing translator. The mapping
dectrans denotes the creation of a new translator out of a
gene using an existing translator. Therefore, both decodings
do not only depend on the gene which is being decoded,
but also on the translator. Different translators can produce
different outcomes for the same gene.

Partial completeness of Pt rans. It even holds that any
behavioral (or translator) automaton can be produced by
dec (or dectrans) out of any gene g depending only on the
decoding translator (and |g| has to exceed some value k
depending on the output automaton, as a translator performs

exactly |g| state changes for a translation):

∀g ∈ G, |g| ≥ k,∀b ∈ P ∃t ∈ Ptrans : dec(g, t) = b, (1)
∀g ∈ G, |g| ≥ k,∀t′ ∈ Ptrans ∃t ∈ Ptrans : dectrans (g, t) = t′. (2)

This can be proven easily by constructing for each behavior
b (or translator t) a translator which simply ignores the
input and creates as a constant output the behavior b (or the
translator t). This property is called the partial completeness
of the space of translator phenotypes Ptrans.

Universal translators. A direct implication of the above
completeness statement is that for a fixed translator there
may exist behaviors (or translators) which cannot be created,
regardless of which gene is being decoded (e. g., for the
aforementioned constant translators, most behaviors cannot
be created). Translators, therefore, have more impact on the
outcome of decodings than the decoded genes have.

There is, however, a class of translators which can produce
every possible behavior (or translator) depending on the
decoded gene. A universal translator u is a translator which
meets one of the following requirements:

∀b ∈ P ∃g ∈ G : dec(g, u) = b, (1)
∀t′ ∈ Ptrans ∃g ∈ G : dectrans(g, u) = t′. (2)

As in the beginning every point of the phenotypic spaces
should be reachable, a universal translator is used as initial
translator in all experiments. For runs with evolvable trans-
lator, however, it is possible that at a certain time step not
every phenotype can be reached anymore (although always
every genotype can).

4. Evolutionary Operators

Mutation, selection and fitness calculation are described
in this section. For simplicity reasons, there is no recombi-
nation operator applied. Also, no memory genome is used
(cf. [12]). These two operators will be tested in future
experiments.

Mutation Every tmut (tmut
trans.) simulation cycles, mutation

is applied to all robots’ behavioral (translator) genes. Where
real-valued operations are used on the byte-valued genomes,
a rounding operation is assumed to be used afterwards.

New mutation operator M: The following standard mu-
tation operator for real-valued genomes is used: by a small
probability ε (εtrans), a value

R = randgaussian · d, (Rtrans = randgaussian · dtrans,)

is added to every byte of the gene. I. e., R? is a real-valued
random variable with normal distribution and a standard
deviation of d?, being rounded to integer and put in range
afterwards. Additionally, with probability ε? · f +

? (|g|) a new
byte with (a newly drawn) value R? is appended to the end
of the sequence; with probability ε? · f −? (|g|), the rightmost

byte is deleted. f +
? and f −? provide for short genes a higher

probability to get longer than for long genes (see Tab. 1).
As a mutation takes effect first when the according gene

is translated into a new automaton, after the mutation of
a behavioral gene, the gene is translated by the current
translator of the robot into a new behavior.

As well, after the mutation of a translator gene, the
current translator t translates the new gene g′trans and gets re-
placed by the new automaton t′ = dectrans(g′trans, t), cf. Fig. 3.
However, this may lead to an unstable state, because a
translation of g′trans by t′ can lead again to a new translator
and so on causing an unpredictably long chain of mutations.
Therefore, the replacement t B dectrans(g′trans, t) is not done
once, but until a stable state is reached and the translator
does not change anymore (to deal with possible cycles, a
maximum number of 100 translations is not exceeded). Of
course, this process of mutating always to a stable state
is quite artificial and lacks a natural counterpart. However,
leaving it out would mean that a mutation could possibly
cause effects which appear unpredictably far in the future.
This would make it impossible to evaluate the automaton
appropriately in the rather short time before it gets subject
to selection.

At this point, there is also one single evaluation on
the translator level applied: translators tend to degenerate
to empty automata by mutation; as an empty translator
always produces empty output (i. e., particularly non-moving
behavior) which cannot be desired by any fitness function, it
seems plausible to prohibit such mutations. In that case the
mutation is undone and the translator remains unchanged.

Old mutation operator Mold: To provide comparisons to
earlier approaches, experiments were also made with the
mutation operator Mold provided in [12], [13]. Here, the best
parameter setup described in the papers is used.

Reproduction and Selection. Selection is based on an
operator similar to tournament selection in classical evo-
lutionary computation. Due to the decentralized approach,
however, selection cannot be defined as a population-based
operator. In [11], two robots produce offspring when they
come spatially close to each other. Child behavior is then
produced by cloning the parent with the best fitness. Since
reproduction in that approach occurs unpredictably, it is
difficult to control reproduction rate and selection pressure.

In simulation, we use a ”semi-decentralized” approach
which allows for more control of reproduction rate and
selection pressure while still being close to a completely
decentralized method [12]. Thereby, a clock triggered by the
simulation environment is used to synchronize reproduction.
The robots no longer reproduce when they meet, but all
robots reproduce simultaneously according to this global
clock; every robot mates with one (or more, 7 in the
conducted experiments, see Sec. 5) robot(s) it is spatially
closest to at that moment, selecting always the best genome
as its child genome. Note that in runs with evolvable GPM,

additionally the translator of the chosen parent has to be
cloned as the interpretation of the genome always depends
on the decoding automaton.

In a completely decentralized version of this, a robot
could collect genomes of other robots, performing selection
onboard when a defined number of parents is reached.

Fitness Calculation. Fitness calculation also must be
done in a decentralized way which leads to a fitness es-
timation, cf. [8]. Fitness is calculated for a gate passing
behavior which is the more complex of the two behaviors
described in [12]. The robots are supposed to avoid collisions
and at the same time pass a gate in the middle of the field
as often as possible (cf., e. g., Fig. 7). As these are two
contrary requirements (passing the gate means approaching
walls and, therefore, risking collisions), the behavior has an
inherent complexity.

Every robot starts with a zero fitness in the beginning
to which a fitness snapshot (see below) is added every t f it

simulation cycles. Every tevap cycles the fitness is divided
by 2. This evaporation is meant to diminish the influence
of old behaviors. After mutation, the fitness is not changed
(as small changes in the behavior are expected). After
reproduction, the fitness of the selected parent is taken. The
snapshot is calculated by the following algorithm:

snapshot B −3 · #(collisions since last snapshot);
if gate has been passed since last snapshot then

snapshot += 10; /* Gate bonus. */

end if
if current operation is not a Move(X) operation then

snapshot -= 1; /* Punishment for not moving. */

end if

5. Experimental results

Setup. All runs proceeded on a rectangular field sized
1440 × 980 mm2 (cf. Fig. 7) with a gate in the middle
(190 mm). 30 robots started at uniformly random positions
and angles with empty behavioral automata and a universal
translator u. The runs lasted for 300, 000 simulation cycles
(about 55 minutes in a real-world scenario). The following
three blocks of runs have been performed for which Tab. 1
shows the detailed parameter setups:

1) Flexible GPM with mutation M. The parameter εtrans

varied in 50 equal steps from 0.01 ‰ to 2.00 ‰. For
each εtrans, 10 runs have been performed.

2) Fixed GPM with mutation M. ε was tested in prelim-
inary studies with fixed GPM (50 different values, 10
runs each); set here constantly to best found value of
5 ‰.

3) Fixed GPM with mutation Mold. 500 equal runs with
the best setup described in [12] have been performed.

For reproduction, each robot produced 1 child with the 7
robots closest to itself (i. e., 8 parents for 1 child) as this

Table 1. Parameter setup.

Flexible GPM Fixed
GPM, M

Fixed
GPM, Mold

tmut 100 cyc 100 cyc 100 cyc
tmut
trans 1000 cyc - -
ε 5 ‰ 5 ‰ -

εtrans 0.01, ..., 2 ‰ - -
d 2 2 -

dtrans 1 - -
f +(|g|) 20 − |g|/30 20 − |g|/30 -
f −(|g|) 1 + |g|/30 1 + |g|/30 -

f +
trans(|g|) 10 - -

f −trans(|g|) 10 - -
Parents/Childr. 8/1 8/1 8/1

t f it 50 cyc 50 cyc 50 cyc
tevap 300 cyc 300 cyc 300 cyc

Figure 7. Trajectory of an evolved collision avoiding robot
without gate passing (group 1). A robot is drawn to scale.

setting showed the best performance in [12].
Resulting Behavioral Automata. The evolved automata

can be roughly separated to three groups (ascending in
collaboration and population fitness):

1) individual collision avoidance without gate passing,
2) ”selfish” gate passing, and
3) ”altruistic” gate passing with collision avoidance.
Fig. 7 shows the trajectory of an automaton from group 1),

executed on a single robot in an empty field; the ”X” marks
the starting point. The robot is able to avoid collisions with
walls, but it cannot pass the gate. Behaviors from this group
are the least complex as avoiding collisions can be done by
a very simple two-state automaton. Individual fitness and
population fitness are lower than in groups 2) and 3), since
the gate passing bonus is not (or rarely) achieved.

Automata from Group 2) are more complex as they
involve detecting and passing the gate (very robustly in
many cases). However, these automata are only capable of
exploiting the gate bonus for a small number of robots at
once (one or two mostly) which pass the gate constantly and,
therefore, have a high fitness. The population fitness is lower
than in group 3), since the other robots cannot pass the gate
at the same time. In some cases, also a collision avoidance
is part of the behavior. Fig. 8 shows the trajectories of two
robots with automata from group 2), finding the gate and

Figure 8. Trajectories of two evolved robots finding the
gate and passing it constantly together (group 2).

Figure 9. Trajectory of an evolved robot following walls and
thus passing the gate by still avoiding collisions (group 3).
Turning right is done by turning left for about 270 degrees
in little circles which makes the according automaton sur-
prisingly simple (cf. Fig. 10).

passing it constantly.
Group 3) involves the most adapted resulting automata.

Here, the whole population is capable of exploiting the gate
bonus leading to a high population fitness. An example
behavior from group 3) is shown in Fig. 9 where a wall
following automaton has been evolved, meaning every robot
is driving parallel and close to the wall, following its course.
Therefore, all robots can drive in a line and pass the
gate twice during a circulation of the field. The depicted
trajectory is additionally interesting as it is produced by the
very simple automaton shown in Fig. 10 (tautological parts
of conditions have been removed). The automaton does not
even have a state with a TurnRight-operation, but it emulates
turning right by turning left by a large amount until the robot
faces in the desired direction.

As not all populations could be observed separately, it was
found evident to define populations to belong to groups 2)
or 3) if the number of gate passings exceeded a certain
constant. By setting this constant to 0.8 gate passings per 100
simulation cycles (which seems to match best the observed
runs where one of the gate passing behaviors occurred), 45%
of the runs with mutation M (fixed or flexible) belonged to
these groups, but only 29% of the runs with mutation Mold

Figure 10. Surprisingly simple automaton for wall following
without any TurnRight-operation (cf. trajectory in Fig. 9).

Figure 11. Mean gate passings per 100 cycles and mean
fitness during runs with fixed GPM, and the 50 different
εtrans-settings (in per mill) with flexible GPM.

did. A relation between groups 2) and 3) is not provided as
these groups fade into each other and are hard to distinguish
even by observation. All observed populations belonged to
one of the three groups as collision avoidance occurred in
every run not in one of the two gate passing groups.

Overall Results. Fig. 11 shows the mean gate passings
per 100 simulation cycles and the mean fitness during the
runs for 1), the 50 different settings with flexible GPM (solid
lines), 2), the best runs (ε = 5 ‰) with fixed GPM and
mutation M (dashed lines), and 3), the runs with fixed GPM
and mutation Mold (dotted lines). The X-axis is labeled with
the values for εtrans in per mill (every other value is omitted).

Apparently, all new runs outperform the runs with old
mutation in terms of the number of gate passings, indicating
behavior complexity, and of mean fitness. This confirms the
hypothesis enunciated in Sec. 1, that a GPM can improve
performance of evolution based on FSMs.

As the figure shows, the number of gate passings is greater
with flexible GPM than with fixed GPM for most values of
εtrans (on average 0.79 vs. 0.77 per 100 cycles). E. g., for
εtrans between 0.42 and 1.15, this is true in all but one case.
This indicates that more complex behaviors evolved with
flexible GPM than with fixed GPM which was assumed an
effect of the evolvable GPM in Sec. 1. However, due to
variance, the difference in performance is too small to be
significant here, and a more precise study of the mutation
probability εtrans has to be done in the future. Nevertheless,
we conjecture that the results confirm the assumed effect, as
over a wide range of εtrans-values the flexible GPM performs
best. The optimum of these values has to be found, and with
a further adaptation of parameters, we expect the flexible
GPM to more clearly outperform the fixed version.

Another indication supports this conjecture: mean fitness
is lower for flexible GPM for most values than for fixed
GPM (on average 12.86 vs. 13.16). This can be explained by
a higher diversity in the populations, due to two concurrent
mutation operators, which leads to a higher probability for
disappearance of already learnt good behavior. In runs with
low mean fitness, the counted number of gate passings must
have been achieved during rather short periods of good
behavior while the rest of the time behavior and fitness
were bad. Counterintuitively, low mean fitness combined
with many gate passings during a run can, therefore, account
for a high complexity of behavior which got lost again later.
For future studies, experiments with the memory genome are
planned, since the problem of loosing learnt good behaviors
can be reduced significantly with this strategy [12].

6. Conclusion

In this paper, a new approach for encoding the genotype-
phenotype mapping during evolutionary runs has been pre-
sented. Here, the GPM is encoded as part of the genotype
which makes it flexible and completely evolvable. The intro-
duced genotypic representation (both with fixed and flexible
GPM) has been shown to improve performance of decen-
tralized evolution compared to former approaches without
an explicit distinction between genotype and phenotype on
the controller level.

The flexible GPM performs better than the fixed GPM
in terms of complexity of the evolved behaviors over a
wide range of the tested parameters. Although the statistical
significance of this result is not clear so far, there are
sound indications that within this range an optimum can be
found where the flexible GPM significantly outperforms the
fixed GPM. For future studies, techniques like the memory

genome [12] for reducing the loss of already learnt good
behaviors will be used to verify this conjecture.

Furthermore, the influence of standard recombination op-
erators will be analyzed, and the approach will be studied
using more complex target behaviors. Experiments with real
robots are also planned for the future.

References

[1] E. Bonabeau, G. Theraulaz, and M. Dorigo. From Natural to
Artificial Systems (Santa Fe Institute Studies in the Sciences
of Complexity). Oxford University Press, 1999.

[2] V. Braitenberg. Vehicles: Experiments in Synthetic Psychol-
ogy. Cambridge, MA: MIT Press, 1984.

[3] D. Floreano, P. Husbands, and S. Nolfi. Evolutionary Robotics
in Springer Handbook of Robotics. Springer, 2008.

[4] D. J. Futuyma. Evolutionary Biology. Sinauer Associates
Inc., 1998.

[5] E. J. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 1979.

[6] N. Jakobi. Evolutionary robotics and the radical envelope-of-
noise hypothesis. Adapt. Behav., 6(2):325–368, 1997.

[7] N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality
gap: The use of simulation in evolutionary robotics. In
Advances in Artificial Life: Proc. 3rd European Conference
on Artificial Life, pages 704–720. Springer-Verlag, 1995.

[8] Y. Jin. A comprehensive survey of fitness approximation
in evolutionary computation. Soft Computing - A Fusion
of Foundations, Methodologies and Applications, 9(1):3–12,
2005.

[9] R. E. Keller and W. Banzhaf. Genetic programming using
genotype-phenotype mapping from linear genomes into linear
phenotypes. In Genetic Programming 1996: Proceedings of
the First Annual Conference, pages 116–122. MIT Press,
1996.

[10] M. Kimura. The Neutral Theory of Molecular Evolution.
Cambridge University Press, 1985.

[11] L. König, K. Jebens, S. Kernbach, and P. Levi. Stability of
online and onboard evolving of adaptive collective behavior.
In Springer Tracts in Advanced Robotics, 2008.

[12] L. König, S. Mostaghim, and H. Schmeck. Online and
onboard evolution of robotic behaivior using finite state
machines. In 8th International Conference on Autonomous
Agents and Multiagent Systems, 2009.

[13] L. König and H. Schmeck. Evolving collision avoidance on
autonomous robots. In M. Hinchey, A. Pagnoni, F. Rammig,
and H. Schmeck, editors, Biologically Inspired Collaborative
Computing, 2008.

[14] J. R. Koza. Genetic Programming – On the Programming of
Computers by Means of Natural Selection. MIT Press, 1992.

[15] S. Nolfi and D. Floreano. Evolutionary Robotics. The Biology,
Intelligence, and Technology of Self-Organizing Machines.
The MIT Press, Cambridge, Massachusetts, 2001.

[16] J. Walker, S. Garrett, and M. Wilson. Evolving controllers for
real robots – a survey of the literature. Adaptive Behavior,
11:179–203, 2003.

[17] R. Watson, S. Ficici, and J. Pollack. Embodied evolution:
Distributing an evolutionary algorithm in a population of
robots. In Robotics and Autonomous Systems, pages 1–18,
2002.

