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Abstract. In this paper, we introduce Aware, a knowledge-enabled
framework for robots’ situational awareness. It is designed to support
autonomous logistics vehicles operating in automobile manufacturing
plants. Aware comprises an ontology grounding robots’ observations,
a knowledge reasoner, and a set of behavioral rules: The Aware
ontology models data streams of proprioceptive and exteroceptive sensors
into high-level semantic representations. The knowledge reasoner infers
adequate policy by reasoning over a sliding window of observations,
presumably depicting the robot’s perceptions and actual state of
knowledge. The behavioral rules, in analogy to road traffic rules and
common sense, regulate the operation of autonomous robots in a
manufacturing environment despite their obvious peculiarity. Our rules
are the first ones facilitating the orderly and timely flow of vehicles. We
show the applicability of Aware in an industrial set up. Overall, we posit
that situational awareness is a fundamental element towards functional
autonomy and argue that it can provide a reliable basis for organizing
and controlling robots in a smart factory in the near future.

Keywords: Knowledge Graphs, Autonomous Vehicles, Semantics-based
Smart Factory, Internet of Things

1 Introduction

A plethora of autonomous and automated guided vehicles5 are increasingly
engaging in logistics operations. With the diversity of autonomous robots

? This work was supported by BMW Group
5 We use vehicle and robot interchangeably throughout the course of this paper
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such as transport robots, autonomous forklifts and autonomous tugger
trains, substantial challenges emerge to optimize operations within a smart
factory [1]. The German Association of the Automotive Industry published
the communication interface VDA50506, between automated guided vehicles
(AGVs) and a central master controller within the automotive manufacturing
plants. VDA5050 enables the implementation of parallel and complementary
operations of AGVs through a central master controller. Further, the
American National Standards Institute/Industrial Truck Safety Development
Foundation released the safety standard ANSI/ITSDF B56.5-20197 for
driverless, automatically guided industrial vehicles. However, less work has
been done towards governing interactions with other agents encountered on
the shop floor that are not monitored by the same master controller, such as
manned industrial vehicles and autonomous vehicles. In an analogous domain,
in road autonomous driving, vehicles’ interactions are typically governed by
established priors like traffic rules and common sense. However, to the best of our
knowledge, such priors over operational conduct of industrial vehicles, besides the
safety-related priors [2,3], have not yet been considered in research and standards
efforts. Examples of operational priors include right of way or overtaking
behavior on divided aisles. Autonomous robots in logistics are currently able
to perform complex tasks such as transportation, goods pick up and goods
drop off. In a case study on logistics vehicles in an automobile manufacturing
plant, we deduce that autonomous vehicles, whereas operating safely without
being controlled directly by humans, still lack behavioral grounding. We observe
operational impediments caused by: (1) low agility of autonomous vehicles
compared to manned vehicles caused by rigorous safety regulations implemented
on the autonomous vehicle, (2) autonomous vehicles possibly getting into
bottlenecks in various situations such as in intersections, or narrow aisles.

Current autonomous robots are equipped with various sensors like depth
cameras, LiDAR, indoor localization tags and ultrasonic sensors. Despite
the development of artificial intelligence approaches depicting the streams of
data published from the sensors, such as object detection [4] and 3D pose
estimation [5], we posit that such representation is not solely sufficient to
ensure timely and orderly operation, and must be complemented with situational
awareness. Vehicles cannot understand and reason over their environment
without a high-level semantic representation of the data. In [6], we introduced
the Aware ontology eliciting the knowledge of the moment as perceived by
the autonomous robot, including its telemetry, priors on its environment, its
sensed surrounding, and the rules governing the relations between the perceived
assets. Aware was developed in Web Ontology Language (OWL)8 [7], which is
particularly advantageous when reasoning and handling data from heterogeneous

6 VDA5050 – Schnittstelle zur Kommunikation zwischen Fahrerlosen
Transportfahrzeugen (FTF) und einer Leitsteuerung, https://www.vda.de/en

7 ANSI/ITSDF B56.5-2019 Safety standard for driverless, automatic guided industrial
vehicles and automated functions of manned industrial vehicles

8 https://www.w3.org/OWL/

https://www.vda.de/en
https://www.w3.org/OWL/
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data streams. In this paper, we introduce the Aware framework to close the
gap between the perceptions of the robot and further knowledge processing.
Aware represents processed data streams as what we refer to as observations
using timestamp-based temporal RDF representation [8]. The Aware decision
module uses a set of rules to reason over observations and priors in order to
adapt the behavior of the robot. The proposed approach can be easily extended
to deal with further situations requiring robots’ awareness by adding more rules
and adapting the ontology accordingly to cover the application domain. Overall,
our main contributions of this paper are:

1. We introduce Aware, a knowledge-enabled framework for robots’ reasoning
that is, for the first time, specifically designed for enhancing situational
awareness of autonomous robots operating in a manufacturing plant. Aware
includes an ontology, a set of rules, and a reasoner.

2. We publish the first set of rules governing autonomous logistics vehicles in
a manufacturing plant, resolving traffic bottlenecks and facilitating orderly
and timely operations within a smart factory.

3. We show the applicability of the Aware ontology to ground robots’
proprioceptive and exteroceptive perceptions, as well as priors on the
environment, for the purpose of situational awareness.

The remainder of this paper is organized as follows: In section 2, we
review work related to the manufacturing domain’s ontologies, knowledge
processing frameworks, and situational awareness applications. Further, we
review impediments we identified by observing operational autonomous robots
deployed in a manufacturing environment. Next, in section 3, we introduce the
Aware framework. In section 4, we describe how we evaluated the framework
and its comprised ontology. We describe the lessons learned from developing
an industrial application based on Semantic Web technologies in section 5. We
summarize the paper in Section 6.

2 Related Work and Priors

In this section, we provide background information about the two areas whose
intersection this work resides in: ontologies supporting robotics applications, and
knowledge processing frameworks. Then we present work related to situational
awareness of autonomous robots and provide insights on impediments observed
on the shop floor that can be resolved through situational awareness.

Ontologies. Ontologies have been applied in robotics applications to
describe the semantic knowledge of robots. Low-level data streams from
sensors are transformed into high-level semantic representations following
ontology grounding. Most previous research related to robotics cognition, such
as [9,10,11,12,13], adopted knowledge models focused on task planning. In [13],
the knowledge schema represents robots’ actions and perceptions but does
not address knowledge of intrinsic states. Further, [9,10,11,13] lack the use of
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common terminologies provided by IEEE 1872 [14], W3C9 or OGC10 standards.
Moreover, the operational environment represented in these knowledge models
is not relevant to manufacturing plants. In [6], we introduced the Aware
ontology to represent the prevailing state of knowledge of the autonomous robot
operating within an automobile manufacturing plant.

Knowledge Processing Frameworks. Ontology-based approaches for
robots’ autonomy are thoroughly discussed in a recently published review [15].
OMRKF [9] was designed to enable service robots in household environments.
The framework enhances the robot’s navigation and task planning capabilities.
KnowRob [16] also focuses on household environments. Knowledge in KnowRob
is organized in an action-centric way to support reasoning about action and task
planning. OUR-K [10] is oriented towards robot intelligence for service robot
use cases. It builds up rich knowledge for the robot to allow the completion
of tasks even if the information at its disposal is incomplete. OpenRobots
(ORO) [11] focuses on the implementation of a knowledge representation and
reasoning for autonomous robots deployed in complex environments where they
need human-machine interaction capabilities. Perception and Manipulation
Knowledge (PMK) [12] is an ontological-based reasoning framework to enhance
a robot’s task- and motion-planning capabilities in the manipulation domain.

Situational Awareness. Situational awareness, as defined in the Oxford
dictionary, is knowing that something exists and is important. Endsley [17]
defined the scientific term ”Situational Awareness” (SA) as the perception of
relevant elements in the environment, the comprehension of their significance,
and the projection of their future status. Thus, in this context, achieving
situational awareness in robotics goes beyond ensuring basic functionalities
such as navigation or task planning to decide on the most favorable course of
action. Awareness has been essential in a wide range of domains such as urban
autonomous driving [18,19,20,21] where SA helps to understand the interactions
between perceived entities and empowers decision making in traffic situations.
In air traffic control [22,23], SA helps ensuring efficiency and safety during
take-off and landing by assessing locations of the aircrafts and projecting their
future locations. In [24], SA increases cell phone profitableness by improving its
functionalities. According to Endsley [17], good SA still does not ensure good
performance, however, good performance becomes more likely with SA.

Impediment Situations in Manufacturing Environments. The
complexity of manufacturing environments where autonomous robots are
deployed is mainly due to their heterogeneity: they comprise both static and
moving objects, humans as well as machines, autonomous and non-autonomous
vehicles. The complexity is increased by the difficulty of establishing a traffic
rule book that regulates the traffic within the manufacturing plant. In a case

9 https://www.w3.org/
10 https://www.opengeospatial.org/

https://www.w3.org/
https://www.opengeospatial.org/
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(a) Convoy driving (b) Hyperopic perception

(c) Oncoming traffic with long obstacle

Fig. 1: Pictures of impediments encountered in a case study on autonomous
robots deployed in an automobile manufacturing plant.

study conducted on autonomous transport robots deployed in an automobile
manufacturing plant, we observe impediments in multiple situations such as
at intersections. Although the robots are equipped with the required hardware
and software to operate safely without human supervision, their behavior still
demonstrates a lack of smoothness due to their shortness in cognition abilities.
In Fig. 1, we illustrate some operational drawbacks encountered on the shop
floor case study. These drawbacks are illustrated to motivate the necessity of
situational awareness for a functional autonomy: In a convoy driving situation,
as shown in Fig. 1a, a desired behavior for the rear robot is to mimic the
behavioral pattern of the front robot, without attempting to overtake, since the
latter has an anticipated insight and thus a more reliable judgment. In Fig. 1b,
the field of view of the autonomous robot is deficient because of proximity. The
autonomous robot is required to perceive the loaded forklift while approaching
and to reason and deduce potential collision of loads in order to increase
separation distance. In Fig. 1c, overtaking an obstacle on a two-ways aisle might
lead to a bottleneck with oncoming traffic. A more suited behavior is to avoid
overtaking long obstacles.
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3 AWARE: Situational Awareness Framework

Aware is the first situational awareness framework specifically conceived for
the purpose of augmenting autonomous robots in automobile manufacturing
plants with awareness capabilities. The framework can be easily extended to
support other applications of autonomous vehicles. In the following, we present
the Aware knowledge schema, the Aware knowledge base, the cognitive abilities
expressed through behavioral rules, and the ontology-based decision-making
system.

3.1 Knowledge Schema

According to the Aware ontology11 [6], low-level information is represented by
a format understandable to both humans and machines. The Aware ontology
includes 91 classes. In this section, we detail the main elements of the ontology:
the environment model, the robot perceptions, and the decisions the robot is
allowed to make.

Environment Model. The environment model represents the spatial setting
where the autonomous robot operates. It includes a high-level representation of
the manufacturing plant, its assets, and the relations between the assets. The
environment assets are represented in classes for different moving objects as
well as classes for topographic areas and zones that do not change over time.

Perceptions. The perceptions schema captures knowledge about the state of
the autonomous robot and the state of the surrounding assets. Both extrinsic
sensors’ data streams and intrinsic signals are represented. Knowledge about
the surrounding assets is modeled using the class Observation. An observation
instance is used to link all elements of a perception: (1) the observed element,
(2) its observed property, (3) the sensor that made the observation, (4) the
procedure or algorithm used to extract the property, and (5) the timestamp of
the observation. The classes TransitwayObstacle and ObjectOfFocus are used to
identify objects that are of particular relevance in the robot’s field of focus. It
is out of the scope of this paper to detail the Aware data acquisition module
and the related fields of focus. The class TransitwayObstacle is used to describe
objects treated as obstacles to be avoided by the robot. ObjectOfFocus indicates
objects perceived by the camera within the robot’s field of focus, that may
represent an obstacle in the future.

3.2 Knowledge Base

Apart from the ontology, we create a knowledge base (KB) containing instances
of the concepts in our ontology. Our knowledge base contains both time-invariant
instances and instances that do vary over time. As time-invariant instances

11 https://w3id.org/AWARE/ontology

https://w3id.org/AWARE/ontology
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Fig. 2: Observations modeled in a knowledge base.

we have instances of the class Decision, such as pause, adjustSafetyRange, and
instances of the class Procedure, such as object detection models like YOLO [25]
or DetectNet [4]. Furthermore, instances of the class OperationalArea and of
the class ConstraintZone are time-invariant. OperationalArea represents parts
of the plant with a particular functionality such as aisles or drop-off areas,
while the class ConstraintZone refers to delimited surfaces in the plant where
specific behavioral regulations apply such as zones with limited speed or limited
capacity zones. Time-variant instances are characterized by a timestamp. They
represent processed data from different intrinsic and extrinsic sensor streams.
Data extracted from the autonomous robot’s internal state and its surrounding
environment is inserted into the KB as instances of the class Observation.
An example of two instances from class Observation is shown in Fig. 2. One
observation is concerned with one feature of interest only. Multiple observations
can be characterized by the same timestamp. If multiple features of interest
appear simultaneously, such as multiple detections within a single frame, an
observation is created for each independently.

3.3 Basic Assumptions

Aware reasons over behavioral rules to enhance the performance of autonomous
transport robots. To the best of our knowledge, unlike in road traffic, the
functioning of autonomous vehicles in closed environments is not standardized
by an established code of conduct. No published standard regulates traffic within
a manufacturing plant, such as intersections right of way or rules on when
an autonomous vehicle is supposed to yield way. Nevertheless, autonomous
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robots are able to safely perform complex tasks without human intervention.
The observed right of way allocation is often following a first-come first-served
basis, or an it-fits-I-pass policy. We set forth the need to introduce behavioral
rules to govern the behavior of autonomous vehicles deployed in a production
environment, similarly to the implemented safety regulations [2,3]. In the
following, we present our basic assumptions for the behavioral rules guiding
vehicles in a manufacturing environment. We derived these assumptions from the
observed impediments encountered on productive autonomous transport robots.
We list these assumptions to outline the peculiarities of agents’ situational
awareness and its modeling.

1. The behavioral rules are not considered as safety rules and are not intended
to replace such; instead, our rules are designed to ensure timely and
orderly operations of the smart factory, where humans, manned vehicles,
and autonomous vehicles are required to function in alignment.

2. Situational awareness is not a control system; instead, it is a guidance system
facilitating the behavior adaptation of autonomous robots. Hence, in the
absence of guidance, the robot is supposed to proceed as indicated by its
state machine.

3. The autonomous vehicle has always lower priority of way facing manned
vehicles. This is due to the reduced agility of autonomous vehicles compared
to manned vehicles.

4. Autonomous vehicles interact with each other following right of way rules
similar to road traffic rules. That requires the ability for autonomous vehicles
to recognize other autonomous vehicles and differentiate them from manned
vehicles.

5. All autonomous vehicles deployed in the same operations environment are
expected to follow the same traffic rules.

6. All autonomous vehicles deployed in the same operations environment are
expected to have the same priors on the environment. Priors examples are
intersections, driveway side, main and secondary aisles.

7. Autonomous vehicles cannot communicate between each others. To the
best of our knowledge, no standard has been published to enforce lateral
communication between autonomous vehicles. Thus, we do not enforce that
constraint to solve eventual traffic congestion. Aware identifies unsolvable
congestions and notifies the cloud master controller. We predicate the
need for such standardized vehicle-to-vehicle communication to guarantee
a complete autonomy.

3.4 AWARE Architecture

The decision making system is built on top of the knowledge base schema
enriched by a set of behavioral rules. Reasoning over the statements in
the knowledge base, the robot adapts its behavior and avoids different
bottleneck situations by applying the inferred decisions such as ‘pause’ or
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Fig. 3: An overview of the Aware architecture.

‘increaseSafetyRange’. An architecture diagram of the framework is shown in
Fig. 3. In the following, we outline the components of the architecture in more
detail.

Component Handler. The component handler is the data extraction module,
adapting frame rate of data streams, and ensuring alignment of data and
timestamps.

Insight Engine. The insights engine is the central data processing component
through artificial intelligence, and diverse and redundant data analysis processes.
Thus, real-world knowledge extracted by the Components Handler is structured
according to the ontology. For example, images captured by the camera are fed
to a trained neural network for object detection.

Knowledge Acquisition. The knowledge acquisition layer applies masks
on the processed data to narrow down the insights to the area of focus. The
area of focus varies with every sensor: for camera input for example, we filter
out detected objects following a trapezium of interest as in [26].

Perception Engine. The perception engine handles data input and data
retrieval into and from the knowledge base. This module manages a time
window of observations in memory.

Reasoner. On knowledge insertion, a rule written in Prolog [27] automatically
checks all the defined behavioral rules to trigger the ones that match the current
instantiated state. Depending on the observations in the time window, the
inferred guidance is published to the control system to adapt the ego’s behavior
according to the perceived environment.
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Table 1: Subset of rules written in SWRL

Convoy driving

Observation(?obs) ∧ madeBySensor(?obs, camera)

∧ hasFeatureOfInterest(?obs, ?obj) ∧ STR(?obj)

∧ ObjectOfFocus(?obj) ∧ TransitWayObstacle(?obj)

∧ hasT imeStamp(?obs, ?time) ∧ TemporalEntity(?time)

→ hasDecision(?time, stop)

Overtaking tugger train with oncoming traffic

Observation(?obs) ∧ madeBySensor(?obs, camera)

∧ hasFeatureOfInterest(?obs, ?obj) ∧ Tugger(?obj)

∧ ObjectOfFocus(?obj) ∧ hasT imeStamp(?obs, ?time)

∧ TemporalEntity(?time)

→ hasDecision(?time, stop)

Hyperopic perception

isLoaded(ego, True) ∧ Observation(?obs)

∧ madeBySensor(?obs, camera) ∧ hasFeatureOfInterest(?obs, ?obj)

∧ Forklift(?obj) ∧ ObjectOfFocus(?obj)

∧ hasT imeStamp(?obs, ?time) ∧ TemporalEntity(?time)

→ hasDecision(?time, increaseSafetyRange)

3.5 AWARE Implementation

We developed the ontology with the latest version of the Web Ontology
Language OWL2 using Protégé, a free open-source ontology editor developed by
Stanford12. Despite their simplicity, SWRL rules have the disadvantage of being
computationally expensive when reasoning over a large number of rules [20].
Hence, we implemented ontology and rules in SWI-Prolog13 [28], which is a
computational effective logic programming language. We store both the ontology
and the rules using Prolog [27]. We load the knowledge schema, represented
in RDF triples in .owl format, into the konwledge base (KB) of Prolog. The
reasoner inspects the data available in the KB and checks it over the rules in
order to infer the best course of action following the prevailing situation. We
continuously update the KB to keep a 1-minute-duration of knowledge history.
We store observations and inferences over a window of time in order to ensure
a smooth decision making and filter out erroneous decisions generated by noisy
data. The rules, defined in Prolog language, are stored in .pl format. In table 1,
for the sake of expressiveness, we show the rules in SWRL corresponding to the
impediments illustrated in Fig. 1.

12 https://protege.stanford.edu/
13 https://www.swi-prolog.org/
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4 Evaluation

Evaluating a knowledge processing framework for situational awareness and
behavior adaptation of autonomous vehicles is not a trivial task. The reason
behind such challenge is that no evaluation methods or benchmarks are
established so far as it is the case in other areas of artificial intelligence research.
To assess our framework, we perform a quantitative evaluation by measuring
its scalability and responsiveness, and we perform a qualitative evaluation by
testing our system on various scenarios.

Quantitative Evaluation. We evaluate the framework’s performance by
measuring the scalability and the responsiveness. Specifically, we evaluate
scalability by computing the time consumed to store a set of RDF triples
resulting from observations. We wrote a test script to generate up to 45,000 mock
observations from different data streams in a loop, which resulted in 497,104 RDF
triples in total. We measure the responsiveness by evaluating the inference time
of 200 randomly-generated rules over the RDF triples. All the measurements
have been taken on an Intel(R) Core(TM) i7-8565U with a speed of 1.80GHz
and 16.0GB of RAM.

We report the results of our evaluation in Fig. 4. The time consumed scales
linearly with the number of generated observations to reach 2.45 seconds for
45,000 observations. The response time remains almost constant. The reduced
response time is due to the optimization of the rules’ structure that accelerates
the querying process. These results demonstrate that a reasonable amount of
knowledge, as expected in the Aware observations time window, can be stored
and processed efficiently by our framework. The scalability of the system is
currently limited to what a single machine can handle. Overall, the framework’s
capability for responsiveness appears to be sufficient for modeling situational
awareness.

Qualitative Evaluation. To evaluate Aware qualitatively, competency
situations were implemented in a simulation environment using the Unity14

game engine. We collected competency situations by analyzing the behavior
of autonomous transport robots deployed in automobile manufacturing plants.
We documented the behavior of the deployed robots via onsite observations
and expert feedback in three production manufacturing plants in Germany. The
observed fleet of deployed autonomous transport robots comprises 100 robots
operating during two 8-hour-shifts per day. The study to collect the competency
situations was conducted over 10 months.

In Table 2, we list the situations encountered by the autonomous robot that
we refer to as Ego vehicle, and the corresponding guidance output. For example,
on intersections, referred to as crossingArea, a desired behavior of autonomous
robots is to yield way to manned vehicles. In such case Aware would return a

14 https://unity.com/
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Table 2: List of competency situations and expected output of Aware

Situation Aware Guidance

Ego vehicle is located in a CrossingArea decreaseSpeed

Ego vehicle is on MainAisle in a CrossingArea and
detects a manned vehicle in field of focus

stop

Ego vehicle is on MainAisle in a CrossingArea and is
driving straight

-

Ego vehicle is on MainAisle in a CrossingArea and is
turning right

-

Ego vehicle is on MainAisle in a CrossingArea and is
turning left. Ego vehicle detects an autonomous vehicle
on the opposite lane in field of focus

pause

Ego vehicle is in a CrossingArea with Decision
of previous timestamp is pause and the detected
autonomous vehicle on the opposite lane in field of focus
is stationary

-

Ego vehicle is on MainAisle in a CrossingArea and
is turning left Ego vehicle does not encounter an
autonomous vehicle on the opposite lane in field of focus

-

Ego vehicle is on SecondaryAisle in a CrossingArea and
detects a manned vehicle in field of focus

stop

Ego vehicle is on SecondaryAisle in a CrossingArea
while MainAisle is not clear

stop

Ego vehicle is on SecondaryAisle in a CrossingArea and
is driving straight while MainAisle is clear

-

Ego vehicle is on SecondaryAisle in a CrossingArea
and is turning left. Ego vehicle detects an autonomous
vehicle in field of focus

stop

Ego vehicle is on SecondaryAisle in a CrossingArea and
is turning left

-

Ego vehicle is on SecondaryAisle in a CrossingArea and
is turning right while left Aisle is clear

-

Ego vehicle is in a TwoWayAisle and detects a Tugger
as ObjectOfFocus

stop

Ego vehicle is in a CrossingArea and detects a
TransitwayObstacle

stop

Ego vehicle detected in the last timestamp a manned
vehicle as a TransitwayObstacle and enabled obstacle
avoidance. Ego vehicle detects another Entity as a
ObjectOfFocus in the field of focus

stop

Ego vehicle detects an autonomous vehicle as a
TransitwayObstacle and as a ObjectOfFocus

stop

Ego vehicle detects a Forklift as a ObjectOfFocus increaseSafetyRange
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Fig. 4: Scalability and responsiveness per number of observations

stop guidance. Our qualitative evaluation was conducted in an iterative manner
during the ontology and framework development process in order to identify
missing terms in the ontology and to ensure that Aware satisfies all competency
situations in the end. Evaluating the framework also next to the framework
development significantly helped the Aware ontology and framework to become
mature.

5 Lessons Learned

The adoption of semantic technologies in industrial robotics applications is
still facing the challenge of bridging the gap between robotics and semantics
disciplines. We observed that, heretofore, the impact made by semantic
technologies in robotics is limited in industry. Established productive robotics
solutions, including route planning, task planning, and manipulation problems,
use traditional optimization approaches. Through the work presented in this
paper, we pave the way for a productive application of semantic technologies
to enhance operations of autonomous robots. For example, the ability to
dynamically adapt behavior of the robot has always been a requested feature
reported by onsite robots fleet operators to avoid bottlenecks in ways seeming
trivial to the human operators. Human operators have priors from road traffic
rules, and expect robots to operate similarly. Also, drivers of manned vehicles
on the shop floor request that autonomous robots avoid overtaking them. Such
behavioral adaptation requires understanding and reasoning capabilities, besides
knowledge acquisition and storage.

Knowledge acquisition is challenging for modalities like images where
low-level pixels data need to be interpreted into world concepts: to recognise
encountered agents through computer vision, a labeled dataset of all possible
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assets on the shop floor is required, similarly to existing benchmarks for roads
autonomous driving [29]. As a result of this work, an object detection images
dataset was collected and labeled to train object detection models to recognize
and detect assets encountered in manufacturing plants.

It is planned that a pilot Aware robot fleet is deployed in a productive
environment of car manufacturing in autumn 2020. Hence, a policy for bringing
awareness to autonomous machine was clearly identified as crucial. Overall, we
have observed the following practical findings from our study:

1. Creating an ontology is doable, but requires good communication and
best practices. Besides a systematic approach to avoid redundant work
and to eliminate design errors, it was crucial to us to consider Internet
of Things-related peculiarities which have been addressed in ontology
engineering only to a limited degree so far. Specifically, we paid attention
to (a) perception (i.e., how to establish a connection to the world),
(b) intersubjectivity (i.e., how to align world representations), and (c) the
dynamics of world knowledge (i.e., how to model events). For more
information about these aspects, we can refer to [30].

2. Reasoning based on a rule-engine and an ontology has been applied in various
scenarios. In the light of having a well-functioning and scalable Internet of
Things scenario, using RDF triples and Prolog turned out to be a valid
choice.

3. Rules need to be created by domain experts in order to cover all situations
sufficiently. Also, time- and location-related constraints need to be taken
into account. For instance, similar to varying traffic rules from country to
country, robots operating in one environment (e.g., plant A) might need to
cope with different observations and rules in another environment (e.g., plant
B).

4. Deploying the framework in production also requires robust knowledge
acquisition components adapted to the robots’ sensors. In the case of diverse
AI solutions, labeled datasets are needed (e.g., for object detection). This
aspect should not be underestimated.

6 Conclusion and Prospects

In this paper, we introduced Aware, a situational awareness framework
adapted to the perception of autonomous robots operating in automobile
production intralogistics. Aware is the first knowledge-enabled framework
designed to advance robot cognition within manufacturing environments.
Aware incorporates an ontology, a knowledge reasoner, and behavioral rules.
The presented knowledge schema integrates proprioceptive and exteroceptive
observations. Thus, Aware models the intrinsic and extrinsic perceptions,
framing low-level multi-dimensional data streams into high-level semantic
representations. Furthermore, the knowledge reasoner provides guidance to
the robot state machine based on the set of rules governing the interaction
of autonomous robots with other agents operating in the same closed
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manufacturing environment. We predicate the lack of standards towards
managing traffic within a smart factory, since only safety-related priors have
been considered in research and standardization efforts so far.

Our future work orientations are two-fold: first, we will develop late fusion
components to enable sensor fusion at the knowledge representation level.
Therefore, for example, single objects detected by LiDAR as TransitWayObstacle
and by camera as ObjectOfFocus will have their respective Observation entries
linked to the same feature of interest. Secondly, we will focus on modeling
projected future observations based on the observations recorded in a given
time window. Ultimately, such projections will enable autonomous robots to
distinguish between approaching and receding vehicles.
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