
Integration of heterogeneous BPM Schemas:

The Case of XPDL and BPEL

Thomas Hornung1, Agnes Koschmider2, and Jan Mendling3

1 Institute of Computer Science, Albert-Ludwigs University Freiburg, Germany
hornungt@informatik.uni-freiburg.de

2 Institute of Applied Informatics and Formal Description Methods
University of Karlsruhe (TH), Germany
koschmider@aifb.uni-karlsruhe.de

3 Institute of Information Systems and New Media, WU Vienna, Austria
jan.mendling@wu-wien.ac.at

Abstract Heterogeneous Business Process Modeling (BPM) schemas
have been a problem for business process management throughout the
last couple of years. Although there are several standardization efforts
in this area, none of the proposals is commonly accepted as a de facto
standard in the industry. Methodological guidance is needed in order
to consolidate concurrent schema proposals especially in the BPM ares.
This paper discusses the applicability of schema integration for this pur-
pose. We use the case of integrating XPDL 2.0 and BPEL 2.0 to highlight
that schema integration is not able to cope with heterogeneous control
flow representation of BPM schemas. As a consequence, we extend the
schema integration process with a Schema Refactoring step that builds
on the identification of transformation functions between schema con-
structs. This step leads to integrated BPM schemas with less constructs
and that include only one control flow representation paradigm.

1 Introduction

Heterogeneity of schemas for business process modeling is a major problem for
business process management [1] and triggered several academic efforts to com-
pare (e.g. [2]) or to identify patterns (e.g. [3]) of business process modeling lan-
guages. Beyond that, standardization of business process modeling and workflow
languages has been discussed for more than 10 years [4]. Various standardization
bodies including WfMC4, OASIS5, UN/CEFACT6, W3C7, OMG8, and BPMI9

have proposed partially concurrent standards (for an overview see e.g. [2,5]).

4 Workflow Management Coalition (WfMC): http://www.wfmc.org
5 Organisation for the Advancement of Structured Information Standards (OASIS):

http://www.oasis-open.org
6 United Nations Centre for Trade Facilitation and Electronic Business

(UN/CEFACT): http://www.unece.org/cefact
7 World Wide Web Consortium (W3C): http://www.w3.org
8 Object Management Group (OMG): http://www.omg.org
9 Business Process Management Initiative (BPMI): http://www.bpmi.org

Recently, there has been a trend towards consolidation of various standards.
While BPEL [6] has combined concepts of Microsoft’s XLANG [7] and IBM’s
WSFL [8], the new version BPEL 2.0 [9] also seems to consolidate concepts from
BPML [10] whose author is among the BPEL 2.0 editors. Furthermore, the new
XPDL Version 2.0 [11] extends the old version with concepts of BPMN [12]
so that XPDL can be used as a serialization for BPMN diagrams. Finally, the
Business Process Definition Metamodel [13] currently being defined by OMG
aims to provide a UML stereotype for BPM that is mainly influenced by the
BPMN and BPEL specifications.

Although this consolidation is desirable from an industry perspective, there
has been criticism from a methodological, more academic point of view on the
way how consolidation is achieved. In [14] the diverging strategies of different
stakeholders in BPM standardization are highlighted with an emphasis on the
bargaining character of such processes. In [15], XPDL in its version 1 is criticized
for capturing only the minimal consensual set of control flow primitives. It would
be more desirable to offer a superset of concepts found in practice as a standard.
In the case of BPEL the control flow concepts of XLANG and WSFL were put
together, but semantic redundancies were not eliminated. Accordingly, there is a
choice in BPEL between a block structured and a graph structured specification
of control flow [16]. These examples illustrate that methodological guidance is
needed for the consolidation and integration of heterogeneous BPM metamodels.
The non-triviality of this task has been illustrated in a previous contribution [17].

In this paper, we adopt ideas from schema integration and extend them
for the specific requirements of BPM metamodel integration. Our contribution
is twofold. First, we present an integration methodology that can be used to
integrate and consolidate heterogeneous BPM metamodels. From a schema in-
tegration point of view, we identify conflicts of heterogeneous control flow rep-
resentation which are specific to the intention of BPM metamodels. Second, we
apply this methodology to the integration of XPDL 2.0 and BPEL 2.0. As these
are the two major standards for process execution, we aim to contribute to a
further consolidation in the area of BPM. Before this background the paper is
structured as follows. In Section 2 we present the basic ideas of schema integra-
tion and the problems of integrating heterogeneous control flow representation.
In Section 3 we provide an overview of XPDL 2.0 and BPEL 2.0. We use these
two BPM standards to illustrate the BPM metamodel integration process re-
ported in Section 4. In Section 5 we present the integrated metamodel derived
from XPDL and BPEL and discuss it as a candidate standard. Section 6 relates
the elaborations of this paper to other research. Eventually, Section 7 concludes
the paper and gives an outlook on future research.

2 Problems of Schema Integration for BPM Metamodels

Schema integration refers to the construction of a global schema from a set of
local schemas. In general, the local schemas are heterogeneous, i.e. semantically
related concepts are captured by different local schemas in a different way, e.g.

using different names or different structure (cf. e.g. [18]). The global schema is
expected to be complete in capturing all concepts of the local schemas, minimal
by including semantically related concepts only once, and still understandable
[19]. Discovering semantic relationships like equivalence, subsumption, intersec-
tion, disjointness, and incompatibility between concepts of local schemas plays
a central role for schema integration process. In Section 1, we have outlined that
BPEL is not minimal and it is not clear whether the new version of XPDL is
complete.10 Therefore, schema integration could be a promising methodology to
arrive at an integrated BPM schema that is both complete and minimal.

linkactivity

TransitionActivity
basic

activity
structured

activity

*

BPEL
process

* *
XPDL

process

* *

XPDL
package

*

*

1 subprocess

TransitionActivity

process

* *

XPDL
package

*

*

1 subprocess

basic
activity

structured
activity

*
+ =

Figure 1. Parts BPEL and XPDL as well as integrated schema

Figure 1 shows a schema that could be constructed based on semantic rela-
tionships between the intentional domains [20] of XPDL and BPEL constructs.11

There are three semantic relationships: the BPEL basic activity matches the
XPDL Activity, the BPEL link matches the XPDL Transition, and the BPEL
process matches the XPDL process. Yet, the integrated schema (right part of
Figure 1) has still some deficiencies as further simplifications are possible. Some
structured activities can be mapped to a set of XPDL activities and transitions;
e.g. a BPEL sequence as one specific structured activity can be expressed as a
sequence of XPDL activities connected by transitions. Therefore, the sequence
is somehow redundant in the integrated schema. The problem is that this kind
of redundancy cannot be expressed in terms of a binary semantic relationship,
because a BPEL sequence has to be mapped to several Activities and Transi-
tions. In order to eliminate this kind of redundancy, both XPDL and BPEL
processes could be mapped to a language with more expressive modelling prim-
itives like e.g. YAWL [21]. Another option could be a mapping to a more basic
representation like state charts. Although this representational heterogeneity of
behavioral aspects is typical for BPM languages, it seems that it is not inherent
to behavior modelling only. Think of two car component schemas: one might
use an unordered list of arcs and nodes (analogue to XPDL) to model subcom-

10 XPDL 1.0 has been criticized for not being complete in [15].
11 Please note that BPEL links are actually defined in flow structured activities. The

schema is simplified for illustration purposes.

ponent relationships. The other uses a block-oriented representation by nesting
components (analogue to BPEL). The latter allows to model a tree while the
first accepts also general graphs. Intentional semantic relationships about map-
pings between these two different representations could help to eliminate redun-
dant behavioral concepts in the integrated schema. This problems suggest that
a straight-forward application of schema integration for static aspects does not
yield the desired results.

3 Overview of BPEL and XPDL

BPEL is an executable language for the definition of a complex process as a
composition from a set of Web Services.12 BPEL Version 2 is currently being
standardized by OASIS (see [9]). The main concepts of BPEL are basic and
structured activities, variables, partner links, and handlers. Figure 2 illustrates
these main concepts of BPEL and their interrelations by a UML class diagram.

In a simple case, a BPEL process defines partner links, variables, and ac-
tivities. Partner links represent message exchange relationships between two
parties. Via a reference to a partner link type the partner link defines the mu-
tual required endpoints of a message exchange: the myRole and a partner-
Role attributes defines who is playing which role. Partner links are referenced
by basic activities that involve Web Service requests. Variables are used to
store workflow data as well as input and output messages that are exchanged
by Web Services activities via partner links. Furthermore, assign, throw, and
rethrow activities can write to variables (not expressed in Figure 2. Scopes are
specific structured activities13 that can define local variables and handlers
within their scope. Handlers specify responses to unexpected behavior like time
or message events, faults, compensation, or termination. Nesting of structured
activities is used to express control flow in BPEL. There are specific struc-
tured activities for loops (while, forEach, repeatUntil), sequential execution
(sequence), conditional branching based on data (if) or events (pick), and con-
current branches (flow). Additional synchronization constraints in a flow can be
defined via links. So-called basic activities specify the actual operations of
a BPEL process. There are three activities involving Web Services: invoke for
synchronous or asynchronous calls to a remote Web Service, receive to wait for
the receipt of a specific message, and reply for responding to a remote request.
All these activities reference a partner link and specify input and/or output
variables for messages. The correlation set defines those parts of messages
that identify the matching process instance. Handler activities can be used to
throw or rethrow an fault which basically triggers a respective fault handler.
The compensate activity triggers the compensation handler from within a fault
handler. Furthermore, there are activities to assign data to variables, to wait for

12 In this paper, we do not consider so-called abstract BPEL processes that can be
used to model public aspects of business protocols.

13 This specialization relationship is not expressed in Figure 2 in order not to blur the
diagram.

a certain event before continuing, empty for doing nothing, exit to terminate
the process, and validate for XML validation against a schema.

link

activity

basic
activity

structured
activity

*

scope

*

*

BPEL
process

ws activity receive

reply

invoke

handler
activity

rethrow

compensate

throwassign

wait

empty

sequence

if

while

repeatUntil

pick

flow

forEach

validate

variable

*

inputoutput

partnerLink*
handler

*

event

fault

compensation

termination

correlation
set

*

exit

Figure 2. Metamodel of BPEL

XPDL was originally defined as an XML-based interchange format for Inter-
face 1 of the Workflow Reference Model, specifying a “Minimum Meta Model”
which “identifies commonly used entities within a process definition” [22]. In its
new version 2.0 [11], XPDL has been enhanced to additionally serve as an inter-
change format for BPMN [12]. This realignment has been motivated by merger
talks between the Workflow Management Coalition and the Business Process
Management Initiative. As a consequence, the new XPDL version includes new
concepts adapted from BPMN including e.g. Pools, Gateways, or Events. Figure
3 illustrates the main concepts of XPDL and their interrelations by a UML class
diagram.

The XPDL Package serves as a container for all information associated with
a process definition including Pools, Processes, Participants, Applications, Type
Declarations, and Data Fields.14 When used as a serialization of BPMN, the
Package matches one Business Process Diagram (BPD). A Process (or Workflow
Process) defines which Activities are executed and in which order. Since version
2, XPDL can include partner link elements similar to BPEL in a Process. The
control flow is represented via Transition arcs between Activities. Transition
conditions serve as guards for Transitions. The operations of an Activity can in-

14 Associations, Artifacts, and PartnerLinkTypes are not represented in Figure 3.

volve Participants, Applications, and Data Fields which are associated with Type
Declarations. XPDL distinguishes several types of Activities. The Task/Tool
activity describes an activity that is executed automatically without humans be-
ing involved. The Route activity specifies join and split conditions. Similar to a
Gateway, its sole purpose is to represent complex control flow conditions. It can
specify both data- and event-based branching conditions. The Block Activity
defines an embedded sub-process that executes an Activity Set. In contrast to
that, the Subflow represents an explicit call to a sub-process that has been
defined within the Package. Different types of Events are adapted from BPMN
as special types of Activities. In contrast to BPEL, XPDL defines statistical in-
formation for Activities via the deadline, limit, and priority attribute that can
be used by simulation engines. Furthermore, BPEL does not offer sub-processes.
Yet, a respective extension has been proposed in the BPEL-SPE white paper
[23]. Finally, XPDL includes explicit support for different application types like
EJBs, Pojos15, XSLT scripts while BPEL only considers Web Services.

Package Process*

ActivityTransition

from

to

Participant

Application

Type
Declaration

Data Field

*

*

*

*

*

*

*

*

Pool
* *

Message
Flow

Lane

*
0..1

source
target

source
target

**

Activity
Set

**

*

Task/Tool Route

Gateway

Block Subflow Event

Figure 3. Metamodel of XPDL

15 Plain old Java objects

4 BPM Metamodel Integration Process

In the previous section, we have seen that the integration of BPM metamod-
els has specific requirements: classical schema integration does not produce a
global schema that is minimal with respect to control flow representation. In
the following, we will essentially adopt and extend integration processes such as
reported in [24,20,25]. As we are not interested in integrating the extension of
a schema, we rely on semantic relationships defined on the intensional domains
similar to [26,20]. Our BPM metamodel integration process includes the steps
of (1) schema preparation, (2) schema matching, (3) schema merging, and (4)
schema refactoring (see Figure 4).

1. Schema Preparation

E1 E2

E 3

E4

Schema A

Schema B

D1

D2

D3

E 1 E2

E3

E 4

Schema A

Schema B’

D1

D2

D3

2. Schema Matching

Semantic Relationships
E1 = D1
E2 = D3
E3 ∩ D2

3. Schema Merging

E 1,D1 E2,D3

E3

E4

Schema A+B

D2 x

4. Schema Refactoring

E1,D1 E2,D3

E3

E 4

Schema A+B’

D2 x

OutputInput

Figure 4. BPM Metamodel Integration Process

4.1 Schema Preparation

As a first step the two input schemas are transformed to a common data model.
For our discussion of BPM metamodel integration, we map the BPM languages
defined by an XML Schema to an object model using only a subset of elements of-
fered by UML class diagrams. We use class diagrams basically because of UML’s
widespread adoption in the software engineering and information systems com-
munity. Therefore, it is well suited to communicate our integration process. Yet,
the relational model or models especially tailored for integration like e.g. the
generic integration model (GIM) [25] or the hypergraph data model (HDM) [20]
could be used as well.

Figure 5 illustrates how BPEL links and XPDL transitions are represented
in UML. The mapping from XML Schema to class diagrams eliminates hetero-
geneous XML representation of BPEL links and XPDL transitions. In BPEL
the ends of links are associated with the source and target activities, in XPDL
transitions have respective attributes to capture the identifying attributes of
sources and targets. Furthermore, BPEL control flow can also be represented
by structured activities like sequence. Schema Preparation as the mapping to
a common data model has been automated in various research projects. Yet,
XML leaves a lot of design choices. We preformed a manual transformation of
the input schemas in order to assure that the semantics of the metamodels are
captured properly.

Example Arc

A B

BPEL Link XPDL Transition

<Activity Id="A"/>
<Activity Id="B"/>
<Transition
From="A" To="B"/>

<link name="A2B"/>
<empty name="A">
 <source
 linkName="A2B"/>
</empty>
<empty name="B">
 <target
 linkName="A2B"/>
</empty>

linkactivity

UML Representation

TransitionActivity

UML Representation

sequence

Figure 5. Schema Preparation of BPEL and XPDL control flow

4.2 Schema Matching

A central role for the derivation of the integrated schema plays the Schema
Matching step. The two input schemas and the semantics of the schema concepts
are compared in order to identify semantic relationships between the schema
entities A and B. We consider semantic relationships that are defined on the
intentional domains Di(A), i.e. the real world objects captured by the schema
concepts. We adopt the definitions from [20].

– equivalence: two schema constructs A and B are equivalent, if and only if
Di(A) = Di(B). We write A

s
= B.

– subsumption: schema construct A subsumes B, if and only if Di(B) ⊂ Di(A).

We write B
s

⊂ A.
– intersection: two schema constructs A and B are intersecting, if and only if

Di(A) ∩ Di(B) 6= ∅, ∃C : Di(A) ∩ Di(B) = Di(C). We write A
s

∩ B.
– disjointness: two schema constructs A and B are disjoint, if and only if

Di(A) ∩ Di(B) = ∅, ∃C : Di(A) ∪ Di(B) ⊆ Di(C). We write A
s

6∩ B.

In the following we assume that the names of schema constructs are unique
and only significant within their schema, i.e. the schema defines a namespace
for schema constructs. This has the consequence that we do not need to de-
fine disjointness between homonymous elements in different schemas, but only
equivalence, subsumption, and intersection. If you reconsider the graph-based
control flow of XPDL and BPEL as given in Figure 5, there are four equiva-
lences: bpel:activity

s
= xpdl:Activity and bpel:link

s
= xpdl:Transition, as well

as the two associations bpel:source
s
= xpdl:From and bpel:target

s
= xpdl:To.

4.3 Schema Merging

This step takes the input schemas and merges them according to the seman-
tic relationships identified in the Schema Matching step. We adopt the generic
schema merging rules formalized in [20]. For further information on schema op-
timization by schema restructuring rules we refer to [20]. We do not consider
restructuring here.

– equivalence: if A
s
= B then merge A and B to one construct in the integrated

schema including all relationships of A and B.

– subsumption: if A
s

⊂ B, then include A and B in the integrated schema with
a subclass relationship between B and A.

– intersection: if A
s

∩ B, then include A and B in the integrated schema and
add a new construct C to represent the common intentional domain with C

being a superclass of both A and B.

– disjointness: if A
s

6∩ B, then include A and B in the integrated schema and
add a new construct C that is a superclass of both A and B.

4.4 Schema Refactoring

Applying the schema merging rules results in the integrated model as defined in
Figure 6. The problem of this model is that there are still redundancies is con-
trol flow representation that cannot be expressed as equivalence, subsumption,
intersection, or disjointness semantic relationships. We address this problem by
introducing a transformation function t : P(S) → S such that S denotes the
set of all constructs of the integrated schema. We say that for R ⊂ S there is
a transformation t(R) = T with T ∈ S if and only if the intentional semantics
of T can be represented by the constructs included in R. In the example, the
intentional semantics of a BPEL sequence can be expressed by a set of control
flow arcs (link or Transition). We write t(link) = sequence. Each schema con-
struct T that can be represented by other schema constructs R, i.e. if t(R) = T

exists, we exclude T from the integrated schema. This implies that the sequence
structured activity would not be included in the final schema.

link
Transition

activity
Activity

UML Representation

sequence

Figure 6. Result of Schema Merging of BPEL and XPDL control flow

5 Integrated Metamodel of XPDL and BPEL

In the previous section, we have presented a BPM integration process including
the four steps of Schema Preparation, Schema Matching, Schema Merging, and
Schema Refactoring. In this section, we present the results of applying this pro-
cess to XPDL and BPEL. The results of manual Schema Preparation (step 1)
is already given in Figures 2 and 3 of Section 3.

The next step of Schema Matching (step 2) is dedicated to the identification
of semantic relationships between constructs of XPDL and BPEL. Table 1 il-
lustrates some of these semantic relationships. The BPEL constructs rethrow,

validate and XPDL constructs Artifact, Lane, Pool and SubFlow cannot
be matched with any construct of the other schema. The main equivalence re-
lationships are bpel.activity

s
= xpdl.Activity, bpel.scope

s
= xpdl.ActivitySet,

bpel.link
s
= xpdl.T ransition, bpel.variable

s
= xpdl.dataF ield, and bpel.process

s
=

xpdl.Process.

Table 1: Schema Matching of BPEL and XPDL elements

XPDL [11] BPEL [9] Semantic Relationship

Activity activity X
s
= B

ActivitySet scope X
s
= B

Annotation documentation X
s
= B

Application WSDL.operation B
s

⊂ X

Assignment assign X
s
= B

DataField variable X
s
= B

Event {catch, catchAll,

compensate,

compensationHandler

eventHandlers, exit,

faultHandlers, onEvent,

onAlarm,

terminationHandler,

throw, wait}

B
s

⊂ X

Loop {repeatUntil, while} B
s

⊂ X

MessageFlow correlationSet X
s
= B

Participant partnerLink B
s

⊂ X

Package process B
s

⊂ X

PartnerLink partnerLink X
s
= B

PartnerLinkType partnerLinkType X
s
= B

Process process X
s
= B

Route {empty, f low, if, pick} B
s

⊂ X

Task {invoke, receive, reply} B
s

⊂ X

Transition link X
s
= B

TypeDeclaration XML.SchemaType X
s
= B

Based on the identified semantic relationships the XPDL and BPEL schema
are merged (step 3). The result is given in Figure 7 and reflects the output
of a classical schema integration approach. As already outlined in Section 2,
the integrated schema is quite large and still includes redundant constructs. In
the final Schema refactoring step (step 4) such redundancies are identified and
removed. We have identified the following transformation functions:

Package

Participant

Application

Pool
*

Message
Flow

Lane

*
0..1

source
target

Task/Tool
Block

Subflow

Transition
link

activity

basic
activity

structured
activity

*

Activity Set
scope

*

*

BPEL
process

ws activity receive

reply

invoke

handler
activity

rethrow

compensate

throwassign

wait

Route
empty

sequence

if

while

repeatUntil

pick

flow

forEach

validate

Data Field
variable

*

inputoutput

partnerLink*
handler

*

event

fault

compensation

termination

correlation set

*

exit

*
*

*

Figure 7. Merged Schemas of BPEL and XPDL

– All structured activities can be expressed by control flow arcs (Transition/link).
That implies that t({link, route}) = structured activity. Accordingly, struc-
tured activities can be excluded from the integrated schema.

– Activity Sets/scopes are special kinds of embedded processes. Their behavior
can be modelled by independent sub-processes. That implies t(process) =
scope. Thus, scopes can be dropped from the integrated schema.

These two Schema Refactoring operations yield a much simpler schema with less
schema constructs. Control flow is represented in a graph-oriented way using
Transitions/links. Furthermore, handlers can only be defined for processes while
in the input BPEL schema, they could be defined for the process, the scope, and
also for invoke activities.

Package

Participant

Application

Pool
*

Message
Flow

Lane

*
0..1

source
target

Task/Tool

Subflow

Transition
link

basic
activity

BPEL
process

ws activity

receive

reply

invoke

handler
activity

rethrow

compensate

throw

assign

wait

Route
empty

validate

Data Field
variable

*

inputoutput

partnerLink*
handler

*

event

fault

compensation

termination

correlation set*

exit

*

*
*

Figure 8. Refactored integrated Schema of BPEL and XPDL

6 Related Work

Numerous approaches dealing with the integration of heterogenous schemas have
been published so far. Different data models for schema integration have been
proposed, e.g. GIM [25] or HDM [20]. We refer to [27] for a detailed overview of
different strategies in the context of (semi-)automatic schema matching. A good
overview of research on schema integration in general can be found in [25].

The integration of behavioral aspects has received less attention in compari-
son to integration of static data models. Preuner et al. [28] presents an integra-
tion strategy for business process models given as a Petri net derivative called
object/behavior diagrams (OBD). Yet, heterogeneity of business process mod-
elling schemas is not discussed in this context. Integration is often related to
some notion of inheritance. In [29] four types of inheritance relationships are
defined for Petri nets. This work is motivated by model checking as it does not
discuss integration aspects. In contrast to that Simon [30] presents an integra-
tion methodology for Module nets, a specific Petri net variant. Again, this work
addresses the integration of models, but not the integration of metamodels or
schemas for BPM. In so far, our paper complements this stream of work.

In the context of heterogeneous BPM schemas, a lot of research is dedicated
not to integration directly, but to semi-formal comparisons. Examples include
comparisons of XPDL, BPEL, and BPML in [31] and of several BPM languages
in [2]. Another approach is taken by [3] who identify workflow patterns for control
flow semantics. These patterns have been applied as a framework for comparing
various BPM languages. Furthermore, that research inspired the specification of
a new workflow language called YAWL that is able to capture all pattern (ex-
cluding implicit termination). Beyond that, there has been some work on trans-
formations. An overview of transformations between BPEL and graph-oriented
BPM languages can be found in [32].

Yet, there is doubt whether schema integration is suitable as a methodol-
ogy for standardization of schemas. In [33] schema integration as a bottom-up
methodology is contrasted with top-down domain modelling. Schema integration
is said to produce schemas that are too much influenced by the local schemas
and therefore rather difficult to understand, while domain modelling yields much
clearer schemas. We explicitly pick up this criticism by introducing the fourth
step of Schema Refactoring in our integration process. It combines the advan-
tages of both schema integration and domain modelling.

7 Conclusion and Future Work

In this paper we have presented a BPM schema integration process that is able
to cope with heterogeneous control flow representation of BPM schemas. The
process extends the work on conceptual model transformations as presented in
[20]. We introduce a novel step for Schema Refactoring that is guided by trans-
formation functions between redundant schema constructs. The steps include
(1) Schema Preparation, i.e. transformation the two input schemas to a common
data model, e.g. UML, (2) Schema Matching, i.e. the identification of semantic
relationships including equivalence, subsumption, intersection and disjointness
between elements of the two schemas, (3) Schema Merging, i.e. the derivation
of an integrated schema based on the semantic relationships, and (4) Schema
Refactoring, i.e. the identification of transformation functions between schema
constructs and the removal of these unnecessary constructs.

We have demonstrated the applicability of the process by integrating XPDL
2.0 and BPEL 2.0, two major competing BPEL schemas proposed by the Work-
flow Management Coalition and OASIS. The Refactoring step leads to a much
simpler schema with less constructs that classical schema integration would yield.
Still, no semantics are lost. Right now we are looking into other BPM standard
candidates and try to incorporate them into the integrated model given in Sec-
tion 5 in order to define a generic upper-bound BPM schema. The final goal
of our work is to implement a workflow engine that can execute this generic
language and that offers transformations to different standards.

References

1. Delphi Group: BPM 2003 – Market Milestone Report. White Paper (2003)
2. Mendling, J., Nüttgens, M., Neumann, G.: A Comparison of XML Interchange

Formats for Business Process Modelling. In Feltz, F., Oberweis, A., Otjacques,
B., eds.: Proceedings of EMISA 2004 - Information Systems in E-Business and
E-Government. Volume 56 of Lecture Notes in Informatics. (2004)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14 (2003) 5–51

4. Hollingsworth, D.: The Workflow Reference Model: 10 Years On. In: The Workflow
Handbook 2004. Workflow Management Coalition (2004) 295–312

5. Mendling, J., zur Muehlen, M., Price, A.: Standards for Workflow Definition and
Execution. In: Process Aware Information Systems: Bridging People and Software
Through Process Technology. Wiley Publishing (2005)

6. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, Version 1.1. Specification, BEA
Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems (2003)

7. Thatte, S.: XLANG: Web Services for Business Process Design. Spec., Microsoft
(2001)

8. Leymann, F.: Web Services Flow Language (WSFL). Spec., IBM Corp. (2001)
9. Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C.K.,

Thatte, S., Yendluri, P., Yiu, A.: Web services business process execution language
version 2.0. wsbpel-specification-draft-01, OASIS (2005)

10. Arkin, A.: Business Process Modeling Language (BPML). Spec., BPMI (2002)
11. Workflow Management Coalition: Workflow Process Definition Interface – XML

Process Definition Language. Document Number WFMC-TC-1025, October 3,
2005, Version 2.00, Workflow Management Coalition (2005)

12. White, S.A.: Business Process Modeling Notation. Specification, BPMI.org (2004)
13. Koethe, M.R.: Business Process Definition Metamodel. Request for Proposals

(bei/2003-01-06), Object Management Group (2003)
14. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing Web Services Chore-

ography Standards - The Case of REST vs. SOAP. Decision Support Systems
(2005)

15. van der Aalst, W.M.P.: Patterns and XPDL: A Critical Evaluation of the XML
Process Definition Language. QUT Technical report FIT-TR-2003-06, Queensland
University of Technology, Brisbane (2003)

16. van der Aalst, W.M.P.: Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems 18 (2003) 72–76

17. Mendling, J., Pérez de Laborda, C., Zdun, U.: Towards an Integrated BPM
Schema: Control Flow Heterogeneity of PNML and BPEL4WS. In Althoff, K.D.,
Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T., eds.: Post-Proceedings
of the 3rd Conference Professional Knowledge Management (WM 2005). Volume
3782 of Lecture Notes in Artificial Intelligence., Springer Verlag (2005) 570–579

18. Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase
systems. IEEE Computer 24 (1991) 12–18

19. Batini, C., Lenzerini, M., Navathe, S.B.: A Comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Surveys 18 (1986) 323–364

20. Rizopoulos, N., McBrien, P.: A general approach to the generation of conceptual
model transformations. In Pastor, O., e Cunha, J.F., eds.: Advanced Information
Systems Engineering, 17th International Conference, CAiSE 2005, Porto, Portugal,
June 13-17, 2005, Proceedings. Volume 3520 of Lecture Notes in Computer Science.,
Springer (2005) 326–341

21. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language. Information Systems 30 (2005) 245–275

22. Workflow Management Coalition: Workflow Process Definition Interface – XML
Process Definition Language. Document Number WFMC-TC-1025, October 25,
2002, Version 1.0, Workflow Management Coalition (2002)

23. Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A., von Riegen,
C., Schmidt, P., Trickovic, I.: WS-BPEL Extension for Sub-processes BPEL-SPE.
Joint white paper, IBM and SAP (2005)

24. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comput. Surv. 22 (1990) 183–
236

25. Schmitt, I., Saake, G.: A comprehensive database schema integration method based
on the theory of formal concepts. Acta Inf. 41 (2005) 475–524

26. Larson, J.A., Navathe, S.B., Elmasri, R.: A theory of attribute equivalence in
databases with application to schema integration. IEEE Trans. Software Eng. 15

(1989) 449–463
27. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.

VLDB Journal 10 (2001) 334–350
28. Preuner, G., Conrad, S., Schrefl, M.: View integration of behavior in object-

oriented databases. Data Knowl. Eng. 36 (2001) 153–183
29. van der Aalst, W.M.P.: Inheritance of business processes: A journey visiting four

notorious problems. In Ehrig, H., Reisig, W., Rozenberg, G., Weber, H., eds.:
Petri Net Technology for Communication-Based Systems - Advances in Petri Nets.
Volume 2472 of Lecture Notes in Computer Science., Springer (2003) 383–408

30. Simon, C.: Incremental Development of Business Process Models. In Desel, J.,
Frank, U., eds.: Proceedings of the Workshop Enterprise Modelling and Information
Systems Architectures. Volume 75 of Lecture Notes in Informatics., Klagenfurt,
Austria, German Informatics Society (2005) 222–235

31. Shapiro, R.: A Comparison of XPDL, BPML and BPEL4WS. Draft version 1.4,
Cape Visions, http://xml.coverpages.org/Shapiro-XPDL.pdf (2002)

32. Mendling, J., Lassen, K., Zdun, U.: Transformation strategies between block-
oriented and graph-oriented process modelling languages. Technical Report JM-
2005-10-10, WU Vienna (2005)

33. Hasselbring, W.: The role of standards for interoperating information systems. In
Jakobs, K., ed.: Information Technology Standards and Standardization: A Global
Perspective. Idea Group Publishing, Hershey, PA (2000) 116–130

